选择页面

中国优质高扬程高工作压力活塞式电镀真空泵

产品说明

High Head High Working Pressure Piston-Type Vacuum Pump for Electroplating

Product Introduction

 

The pump for the hydraulic double-cylinder double-acting ceramic plunger pump, combination with ceramic alumina plunger and sealing method.
Has a simple structure, stable operation, reliable performance, low noise and high working pressure, pressure fluctuations, small size, light weight, easy installation and maintenance, long life and other characteristics.

 

产品说明

Dual-in and dual-out model
The double inlet and double outlet intelligent hydraulic plunger pump is a high-efficiency and energy-saving product developed by the company. The main wear-resistant components of this product have undergone special processing and have a long service life. At the same time, the cooling and lubrication circulating water has been
eliminated, greatly improving the working environment and achieving clean production. Compared to the series with the same flow rate and pressure, the power is reduced
by 40%. It is currently the most professional and efficient feed pump for filter presses. It can be widely used in wastewater treatment industries such as electroplating, printing and dyeing, chemical, municipal, mining, etc.

Type Rate flow rate(m3) Pressure range(Mpa) Rate pressure(Mpa) Motor power(kw) Inlet and outlet pipe diameter
ZP-D80 80 0~1.5 1.0 18.5 DN125
ZP-D120 120 0~1.5 1.0 30 DN150
ZP-D160 160 0~1.5 1.0 37 DN150
ZP-D200 200 0~1.5 1.0 45 DN200
ZP-D250 250 0~1.5 1.0 55 DN200

Note: The above models are the basic models of plunger pumps, and our company can make various special products according to user requirements.

Our Advantages

Low noise, long service life, efficient and energy-saving, convenient maintenance, and low failure cost. (Compared to other similar products, the advantages are obvious.)

Application Range

Used for the coal washing industry
Used to print and dye leather municipal sewage treatment paper industry
Used for electroplating industry
Used for metal mining sand washing, river dredging industry
Used for the material transport industry

More Product

Packaging & Shipping

Payment
GLOYEL accept different kinds of payment,such as T/T, L/C, Western Union, Money Gram.
Shipment
GLOYEL has established long-term and reliable cooperation with professional packing and shipping company.

 

Recommended Product

 

售后服务: Online Service
保修: 1 年
结构 Single Cylinder
动力 Hydraulic
Application: Slurry Treatment
Performance: No Leak
定制:
可用

|

真空泵

What Is the Impact of Altitude on Vacuum Pump Performance?

The performance of vacuum pumps can be influenced by the altitude at which they are operated. Here’s a detailed explanation:

Altitude refers to the elevation or height above sea level. As the altitude increases, the atmospheric pressure decreases. This decrease in atmospheric pressure can have several effects on the performance of vacuum pumps:

1. Reduced Suction Capacity: Vacuum pumps rely on the pressure differential between the suction side and the discharge side to create a vacuum. At higher altitudes, where the atmospheric pressure is lower, the pressure differential available for the pump to work against is reduced. This can result in a decrease in the suction capacity of the vacuum pump, meaning it may not be able to achieve the same level of vacuum as it would at lower altitudes.

2. Lower Ultimate Vacuum Level: The ultimate vacuum level, which represents the lowest pressure that a vacuum pump can achieve, is also affected by altitude. As the atmospheric pressure decreases with increasing altitude, the ultimate vacuum level that can be attained by a vacuum pump is limited. The pump may struggle to reach the same level of vacuum as it would at sea level or lower altitudes.

3. Pumping Speed: Pumping speed is a measure of how quickly a vacuum pump can remove gases from a system. At higher altitudes, the reduced atmospheric pressure can lead to a decrease in pumping speed. This means that the vacuum pump may take longer to evacuate a chamber or system to the desired vacuum level.

4. Increased Power Consumption: To compensate for the decreased pressure differential and achieve the desired vacuum level, a vacuum pump operating at higher altitudes may require higher power consumption. The pump needs to work harder to overcome the lower atmospheric pressure and maintain the necessary suction capacity. This increased power consumption can impact energy efficiency and operating costs.

5. Efficiency and Performance Variations: Different types of vacuum pumps may exhibit varying degrees of sensitivity to altitude. Oil-sealed rotary vane pumps, for example, may experience more significant performance variations compared to dry pumps or other pump technologies. The design and operating principles of the vacuum pump can influence its ability to maintain performance at higher altitudes.

It’s important to note that vacuum pump manufacturers typically provide specifications and performance curves for their pumps based on standardized conditions, often at or near sea level. When operating a vacuum pump at higher altitudes, it is advisable to consult the manufacturer’s guidelines and consider any altitude-related limitations or adjustments that may be necessary.

In summary, the altitude at which a vacuum pump operates can have an impact on its performance. The reduced atmospheric pressure at higher altitudes can result in decreased suction capacity, lower ultimate vacuum levels, reduced pumping speed, and potentially increased power consumption. Understanding these effects is crucial for selecting and operating vacuum pumps effectively in different altitude environments.

真空泵

What Is the Role of Vacuum Pumps in Pharmaceutical Manufacturing?

Vacuum pumps play a crucial role in various aspects of pharmaceutical manufacturing. Here’s a detailed explanation:

Vacuum pumps are extensively used in pharmaceutical manufacturing processes to support a range of critical operations. Some of the key roles of vacuum pumps in pharmaceutical manufacturing include:

1. Drying and Evaporation: Vacuum pumps are employed in drying and evaporation processes within the pharmaceutical industry. They facilitate the removal of moisture or solvents from pharmaceutical products or intermediates. Vacuum drying chambers or evaporators utilize vacuum pumps to create low-pressure conditions, which lower the boiling points of liquids, allowing them to evaporate at lower temperatures. By applying vacuum, moisture or solvents can be efficiently removed from substances such as active pharmaceutical ingredients (APIs), granules, powders, or coatings, ensuring the desired product quality and stability.

2. Filtration and Filtrate Recovery: Vacuum pumps are used in filtration processes for the separation of solid-liquid mixtures. Vacuum filtration systems typically employ a filter medium, such as filter paper or membranes, to retain solids while allowing the liquid portion to pass through. By applying vacuum to the filtration apparatus, the liquid is drawn through the filter medium, leaving behind the solids. Vacuum pumps facilitate efficient filtration, speeding up the process and improving product quality. Additionally, vacuum pumps can aid in filtrate recovery by collecting and transferring the filtrate for further processing or reuse.

3. Distillation and Purification: Vacuum pumps are essential in distillation and purification processes within the pharmaceutical industry. Distillation involves the separation of liquid mixtures based on their different boiling points. By creating a vacuum environment, vacuum pumps lower the boiling points of the components, allowing them to vaporize and separate more easily. This enables efficient separation and purification of pharmaceutical compounds, including the removal of impurities or the isolation of specific components. Vacuum pumps are utilized in various distillation setups, such as rotary evaporators or thin film evaporators, to achieve precise control over the distillation conditions.

4. Freeze Drying (Lyophilization): Vacuum pumps are integral to the freeze drying process, also known as lyophilization. Lyophilization is a dehydration technique that involves the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. Vacuum pumps create a low-pressure environment in freeze drying chambers, allowing the frozen product to undergo sublimation. During sublimation, the frozen water or solvent directly transitions from the solid phase to the vapor phase, bypassing the liquid phase. Vacuum pumps facilitate efficient and controlled sublimation, leading to the production of stable, shelf-stable pharmaceutical products with extended shelf life.

5. Tablet and Capsule Manufacturing: Vacuum pumps are utilized in tablet and capsule manufacturing processes. They are involved in the creation of vacuum within tablet presses or capsule filling machines. By applying vacuum, the air is removed from the die cavity or capsule cavity, allowing for the precise filling of powders or granules. Vacuum pumps contribute to the production of uniform and well-formed tablets or capsules by ensuring accurate dosing and minimizing air entrapment, which can affect the final product quality.

6. Sterilization and Decontamination: Vacuum pumps are employed in sterilization and decontamination processes within the pharmaceutical industry. Autoclaves and sterilizers utilize vacuum pumps to create a vacuum environment before introducing steam or chemical sterilants. By removing air or gases from the chamber, vacuum pumps assist in achieving effective sterilization or decontamination by enhancing the penetration and distribution of sterilants. Vacuum pumps also aid in the removal of sterilants and residues after the sterilization process is complete.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, dry screw pumps, or liquid ring pumps, may be utilized in pharmaceutical manufacturing depending on the specific requirements of the process and the compatibility with pharmaceutical products.

In summary, vacuum pumps play a vital role in various stages of pharmaceutical manufacturing, including drying and evaporation, filtration and filtrate recovery, distillation and purification, freeze drying (lyophilization), tablet and capsule manufacturing, as well as sterilization and decontamination. By enabling efficient and controlled processes, vacuum pumps contribute to the production of high-quality pharmaceutical products, ensuring the desired characteristics, stability, and safety.

真空泵

什么是真空泵,它如何工作?

真空泵是一种机械设备,用于在封闭系统中创造和维持真空或低压环境。下面是详细的解释:

真空泵的工作原理是去除密封腔内的气体分子,降低腔内压力,从而形成真空。真空泵通过不同的机制和技术来实现这一目的,具体取决于真空泵的具体类型。以下是真空泵运行的基本步骤:

1.密封舱:

真空泵连接到一个密封的腔室或系统,需要从其中抽排空气或气体分子。真空室可以是容器、管道或任何其他封闭空间。

2.入口和出口:

真空泵有一个进气口和一个出气口。进气口与密封舱相连,而出气口可排入大气或与收集系统相连,以收集或释放抽空的气体。

3.机械动作:

真空泵产生一种机械作用,将气体分子从真空室中抽出。不同类型的真空泵采用不同的机制来实现这一目的:

- 正排量泵:这些泵通过物理方式捕获气体分子并将其从腔室中排出。例如旋片泵、活塞泵和隔膜泵。

- 动量传递泵:这类泵利用高速喷射或旋转叶片将动量传递给气体分子,将它们推出腔室。例如涡轮分子泵和扩散泵。

- 截留泵:这些泵通过将气体分子吸附或冷凝在表面或泵内材料中来捕获气体分子。低温泵和离子泵就是夹带泵的例子。

4.气体疏散:

真空泵工作时,会在腔室和泵之间产生压差。该压差会导致气体分子从真空室移动到泵的入口。

5.排气或收集:

一旦气体分子从腔室中排出,它们要么被排入大气,要么被收集起来并根据具体应用进行进一步处理。

6.压力控制:

真空泵通常包含压力控制机制,以保持腔体内所需的真空度。这些机制可包括阀门、调节器或反馈系统,用于调整泵的运行以达到所需的压力范围。

7.监测与安全:

真空泵系统可能包括传感器、压力表或指示器,用于监控压力水平、温度或其他参数。还可能包括泄压阀或联锁等安全功能,以保护系统和操作员免受超压或其他危险情况的影响。

需要注意的是,不同类型的真空泵可达到的真空度不同,适用于不同的压力范围和应用。真空泵的选择取决于所需的真空度、气体成分、抽气速度和具体应用要求等因素。

总之,真空泵是一种将气体分子从密封腔体中抽出,从而形成真空或低压环境的设备。真空泵通过正排量、动量传递或夹带等机械作用来实现这一目的。通过产生压差,真空泵将气体从腔室中抽出,气体被排出或收集。真空泵在包括制造、研究和科学应用在内的各行各业中发挥着至关重要的作用。

中国优质高扬程高工作压力活塞式电镀真空泵	中国优质高扬程高工作压力活塞式电镀真空泵
editor by CX 2023-12-01

zh_CNZH