ページを選択

China supplier China Water Ring Vacuum Pump for Chemical, Chemical Fertilizer, Paper and Pharmaceutical Industry 2be3 70 with Best Sales

Product Description

 
 
Catalogue sheet / Katalogblatt 2BE3 70. 
                                                  Liquid Ring  Vacuum pump 
                                                        
 

Introducing the 2be3 70 Series China Pumps Liquid Water Ring Vacuum Pump – a top-of-the-line product designed to meet all your vacuum pumping needs. This high-quality vacuum pump is perfect for a wide range of applications, from industrial to commercial use.

With its advanced technology and superior performance, the 2be1 202 Series China Pumps Liquid Water Ring Vacuum Pump is the ideal choice for those seeking a reliable and efficient vacuum pump. Its powerful motor ensures maximum suction power, while its durable construction guarantees long-lasting performance.

This vacuum pump is designed to handle a variety of liquids and gases, making it a versatile tool for any industry. Its compact size and easy-to-use design make it a popular choice for those seeking a reliable and efficient vacuum pump.

So if you’re looking for a top-quality vacuum pump that can handle all your pumping needs, look no further than the 2be1 202 Series China Pumps Liquid Water Ring Vacuum Pump. With its superior performance and advanced technology, this vacuum pump is sure to exceed your expectations.
 Our company is specialized in different kinds of products. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. To perfect our service, we make our products with good quality at the reasonable price.

Main applications                                                                             

          
These pumps are ideally suited for high demands of the process
          

  • Reactions    §
  • VCM recovery       
  • Crystallisation        
  • Distillation   §        
  • Evaporation          §        
  • Filtration      §        
  • Solvent recovery §        
  • Drying         §        
  • Extrusion     §        
  • Condenser evacuation §        

Main industries                                                                                                             

             

Features and benefits                                                                                                    

          

  • Heavy duty CPI version          §        
  • Large material variety available       
  • High efficiency      §        
  • Inlet pressures until 33 mbar   §
  • Wide selection of shaft seal options §        
  • Also with ATEX certification in Cat. 1 and 2       

Performance curves 

 

 

 
These performance curves are based on operating conditions with saturated air at a temperature of 20 °C (68 °F), operating water at a temperature of 15 °C (60 °F), and a discharge pressure of 1013 mbar (29.92 in Hg abs.) with a tolerance of + 5 %, acc. to PNEUROP 6612.
 
Operating conditions based on different temperatures than stated abovce, often result in increased capacities. Thus, a smaller pump might be selected. Please contact us for your specific requirements.
  
Calculation of individual performance curves is done acc. to individual specification requirements.
          
                                                      Inlet pressure abs.
 

Operating liquid rates (water) for various inlet pressures (1 m³/h = 4.4 US gpm):  

 

 

 

 
Speed
 
 mbar: m³/h  
200 24.1
250 24.7
300  25.4
350  24.2
400  23.0
450  21.5
500  20.1
550             18.4

 
 Tolerance + 20 % / Toleranz: + 20 %
 

Materials  

 

 
 

Materials   
Part No. Description   Material of construction –  
Teile Nr.
 
 
 
 
 
 
Grey cast iron
Grey cast iron / Bronze SS / Grey cast iron SS casting / Grey cast iron
 
 
 
 
 
 
B
 
C
 
E
 
M
 
Vacuum pump   
 
1.01
 
Impeller
 
Laufrad
 
Spheroidal graphite cast iron
ASTM A 536
Grade 60-40-18 2)
 
 
Aluminium bronze
(ASTM B148-74) 2)
 
Stainless steel
ASTM A 276 316Ti 2)
 
 
 
1.02
 
 
 
Shaft
 
 
 
Welle

 

 
Carbon steel 
ASTM A 572 Grade 50 2)

Stahl 
S355J2G3 (St52-3N) / 1.571 2)

 
 
2.01
 
 
Shaft bushing
 
 
Schonbuchse
 
 
Stainless steel centrifugal casting ASTM 532 III A 25% Cr 2)
 
 
 
3.01 
4.01
 
Port plates
 
Steuerscheiben
 
Carbon steel 
ASTM A 283 Grade C 2)
 
 
Stainless steel 
ASTM A 276 316L 2)
 
 
Carbon steel 
ASTM A 283 Grade C 2)
 
 
6.01
 
Casing 
 
Gehäuse 
 
Grey cast iron 
ASTM A 48 Class 40 B 2)
 
 
Grey cast iron 
ASTM A 48 Class 40 B 2)
lined with stainless steel
ASTM A 283 Grade C + ASTM A 276 316Ti 2)
 
 
Grey cast iron 
ASTM A 48 Class 40 B 2)
 
 
7.01
8.01
 
 
End shields 1)
 
 
Seitenschilde  1)
 
 
Grey cast iron 
ASTM A 48 Class 30 B 2)
 
 
 
10.01
 
 
Packing ring
 
 
Packungsring
 
 
Ramie-fibre with PTFE
 
 
 
10.02
 
 
Sealing water distribution ring
 
 
Sperrkammer- ring
 
 
Fiber reinforces plastic

 

 
Extended scope of supply   
 
 
 
 
 
 
Manifold 
(F44 / F47)
 
 
 
 
 
 
Carbon steel 
ASTM A 283 Grade C 2)
 
Stahl 
S235JR (St37-2) / 1.0037 2)
 
 
 
 
 
 
Automatic  drain valve
 
   
Malleable cast iron
 
 

 

  1. Important note:   

    Also deliverable with medium contacted parts completely in stainless steel; please request.
Or comparable material. /

Model numbers and order information                                                                               
Scope of supply   Material of construction – Werkstoffkombination    1) (Details on page 4  –  Details siehe Seite 4) Weight
 
 
 
 
 
 
 
 
 
 
Grey cast iron Grey cast iron / Stainless steel /  SS casting / 
Bronze Grey cast iron Grey cast iron
Grauguss / Bronze CrNi-Stahl /
B C E M
Order No. Order No. Order No. Order No.
 
Ge-

appr. kg

Vacuum pump, basic design   
 
Inlet flange N1.0 at the top, discharge flange N2.0 at the  bottom
   
                     
 
 
 
 
 
 
 
             
Housing w/o partition wall
 
                       
 
 
 
 
 
 
 
             
 
Stuffing box    with internal sealant   2BE1 303-0BY4 2BE1 303-0CY4 2BE1 303-0EY4 2BE1 303-0MY4 1.400
Stuffing box with external   sealant supply   2BE1 303-0BY3 2BE1 303-0CY3 2BE1 303-0EY3 2BE1 303-0MY3 1.400
Mechanical seal, single acting,       with internal sealant supply
 
  2BE1 303-0BY2
 
2BE1 303-0CY2
 
2BE1 303-0EY2
 
2BE1 303-0MY2
 
1.400
 
 
Inlet flange N1.0 and  discharge flange N2.0 at  the top, with drain valves
   
                     
 
 
 
 
 
 
 
             
Housing w/o partition wall
 
                       
 
 
 
 
 
 
 
             
 
Stuffing box    with internal sealant   2BE1 303-0BY4-Z
F63
2BE1 303-0CY4-Z
F63
2BE1 303-0EY4-Z
F63
2BE1 303-0MY4-Z
F63
1.400
Stuffing box with external   sealant supply   2BE1 303-0BY3-Z
F63
2BE1 303-0CY3-Z
F63
2BE1 303-0EY3-Z
F63
2BE1 303-0MY3-Z
F63
1.400
Mechanical seal, single acting,       with internal sealant supply
 
  2BE1 303-0BY2-Z
F63
 
 
2BE1 303-0CY2-Z
F63
 
 
2BE1 303-0EY2-Z
F63
 
 
2BE1 303-0MY2-Z
F63
 
 
1.400
 
Extended scope of supply       
      Order code *) /   Kurzangabe *) appr.kg
 
With mounted suction    manifold
    F  
44
 
62
Discharge flange N2.01 at the    top, with mounted suction    manifold and drain vales     F 47 62
Discharge flange N2.01 at the     top, with discharge-side    mounted liquid separator   and drain vales     F 43 110
Flange connection acc. to    ANSI B16.5     F 62  
With 2nd shaft extension for   tandem drive with 2 pumps     F 66  
With skids     F 45 43
With spray nozzles     F 41  
With cavitation proctection     F 80  
Counterclockwises rotation    with 2nd shaft end     K 98  
Increase of operating liquid     F 64  
Certified acc. to ATEX
   Category 2
   Category 1
 
Casing lined with    stainless steel
 
    F
F
 
91
93
 
 
 
 
 
F23
 
included /
enthalten
 
included /
enthalten
 
F23
 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 12months
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Low Vacuum
Customization:
Available

|

真空ポンプ

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

真空ポンプ

How Do Vacuum Pumps Affect the Performance of Vacuum Chambers?

When it comes to the performance of vacuum chambers, vacuum pumps play a critical role. Here’s a detailed explanation:

Vacuum chambers are enclosed spaces designed to create and maintain a low-pressure environment. They are used in various industries and scientific applications, such as manufacturing, research, and material processing. Vacuum pumps are used to evacuate air and other gases from the chamber, creating a vacuum or low-pressure condition. The performance of vacuum chambers is directly influenced by the characteristics and operation of the vacuum pumps used.

Here are some key ways in which vacuum pumps affect the performance of vacuum chambers:

1. Achieving and Maintaining Vacuum Levels: The primary function of vacuum pumps is to create and maintain the desired vacuum level within the chamber. Vacuum pumps remove air and other gases, reducing the pressure inside the chamber. The efficiency and capacity of the vacuum pump determine how quickly the desired vacuum level is achieved and how well it is maintained. High-performance vacuum pumps can rapidly evacuate the chamber and maintain the desired vacuum level even when there are gas leaks or continuous gas production within the chamber.

2. Pumping Speed: The pumping speed of a vacuum pump refers to the volume of gas it can remove from the chamber per unit of time. The pumping speed affects the rate at which the chamber can be evacuated and the time required to achieve the desired vacuum level. A higher pumping speed allows for faster evacuation and shorter cycle times, improving the overall efficiency of the vacuum chamber.

3. Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that can be achieved in the chamber. It depends on the design and performance of the vacuum pump. Higher-quality vacuum pumps can achieve lower ultimate vacuum levels, which are important for applications requiring higher levels of vacuum or for processes that are sensitive to residual gases.

4. Leak Detection and Gas Removal: Vacuum pumps can also assist in leak detection and gas removal within the chamber. By continuously evacuating the chamber, any leaks or gas ingress can be identified and addressed promptly. This ensures that the chamber maintains the desired vacuum level and minimizes the presence of contaminants or unwanted gases.

5. Contamination Control: Some vacuum pumps, such as oil-sealed pumps, use lubricating fluids that can introduce contaminants into the chamber. These contaminants may be undesirable for certain applications, such as semiconductor manufacturing or research. Therefore, the choice of vacuum pump and its potential for introducing contaminants should be considered to maintain the required cleanliness and purity of the vacuum chamber.

6. Noise and Vibrations: Vacuum pumps can generate noise and vibrations during operation, which can impact the performance and usability of the vacuum chamber. Excessive noise or vibrations can interfere with delicate experiments, affect the accuracy of measurements, or cause mechanical stress on the chamber components. Selecting vacuum pumps with low noise and vibration levels is important for maintaining optimal chamber performance.

It’s important to note that the specific requirements and performance factors of a vacuum chamber can vary depending on the application. Different types of vacuum pumps, such as rotary vane pumps, dry pumps, or turbomolecular pumps, offer varying capabilities and features that cater to specific needs. The choice of vacuum pump should consider factors such as the desired vacuum level, pumping speed, ultimate vacuum, contamination control, noise and vibration levels, and compatibility with the chamber materials and gases used.

In summary, vacuum pumps have a significant impact on the performance of vacuum chambers. They enable the creation and maintenance of the desired vacuum level, affect the pumping speed and ultimate vacuum achieved, assist in leak detection and gas removal, and influence contamination control. Careful consideration of the vacuum pump selection ensures optimal chamber performance for various applications.

真空ポンプ

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

- 説明ダイヤフラムポンプは、真空を作り出すために上下に動く柔軟なダイヤフラムを使用しています。ダイアフラムは真空チャンバーと駆動機構を分離し、コンタミネーションを防ぎ、オイルフリーの運転を実現します。

- 用途ダイヤフラム真空ポンプは、研究室、医療機器、分析機器、オイルフリーまたは耐薬品性真空が必要な用途で一般的に使用されています。

3.スクロール真空ポンプ

- 説明スクロールポンプには、2つのらせん状のスクロールがあり、1つは固定され、もう1つは公転し、一連の動く三日月型のガスポケットを形成します。スクロールが移動すると、ガスは連続的に捕捉され、圧縮され、真空になります。

- 用途スクロール真空ポンプは、分析機器、真空乾燥、真空コーティングなど、クリーンで乾燥した真空を必要とする用途に適しています。

4.ピストン真空ポンプ

- 説明ピストンポンプは、往復運動するピストンを使ってガスを圧縮し、バルブから放出することで真空を作ります。高真空レベルを達成できますが、潤滑が必要な場合があります。

- 用途ピストン真空ポンプは、真空炉、凍結乾燥、半導体製造など、高真空レベルを必要とする用途で使用される。

5.ターボ分子真空ポンプ

- 説明ターボポンプは、高速回転するブレードまたはインペラを使用して分子流を作り出し、気体分子をシステムから連続的に送り出します。ターボポンプの運転には、通常、バックポンプが必要です。

- 用途ターボ分子ポンプは、半導体製造、研究所、質量分析などの高真空用途で使用される。

6.拡散真空ポンプ:

- 説明ディフュージョンポンプは、ガス分子の拡散と、それに続く高速ジェット蒸気による除去に依存しています。高真空レベルで作動し、バックポンプが必要です。

- 用途拡散ポンプは、真空冶金、宇宙シミュレーションチャンバー、粒子加速器など、高真空レベルを必要とするアプリケーションで一般的に使用されています。

7.極低温真空ポンプ

- 説明極低温ポンプは、極低温で気体分子を凝縮・捕獲し、真空を作り出します。液体窒素やヘリウムのような極低温流体で作動します。

- アプリケーション極低温真空ポンプは、素粒子物理学研究、材料科学、核融合炉などの超高真空アプリケーションで使用されます。

これらは、さまざまなタイプの真空ポンプのほんの一例です。それぞれのタイプには利点、制限、特定のアプリケーションへの適合性があります。真空ポンプの選択は、必要な真空レベル、ガス適合性、信頼性、コスト、アプリケーションの特定のニーズなどの要因によって決まります。

China supplier China Water Ring Vacuum Pump for Chemical, Chemical Fertilizer, Paper and Pharmaceutical Industry 2be3 70   with Best Sales China supplier China Water Ring Vacuum Pump for Chemical, Chemical Fertilizer, Paper and Pharmaceutical Industry 2be3 70   with Best Sales
editor by CX 2024-01-01

jaJA