Select Page

China supplier China Water Ring Vacuum Pump for Chemical, Chemical Fertilizer, Paper and Pharmaceutical Industry 2be3 70 with Best Sales

Product Description

Catalogue sheet / Katalogblatt 2BE3 70. 
                                                  Liquid Ring  Vacuum pump 

Introducing the 2be3 70 Series China Pumps Liquid Water Ring Vacuum Pump – a top-of-the-line product designed to meet all your vacuum pumping needs. This high-quality vacuum pump is perfect for a wide range of applications, from industrial to commercial use.

With its advanced technology and superior performance, the 2be1 202 Series China Pumps Liquid Water Ring Vacuum Pump is the ideal choice for those seeking a reliable and efficient vacuum pump. Its powerful motor ensures maximum suction power, while its durable construction guarantees long-lasting performance.

This vacuum pump is designed to handle a variety of liquids and gases, making it a versatile tool for any industry. Its compact size and easy-to-use design make it a popular choice for those seeking a reliable and efficient vacuum pump.

So if you’re looking for a top-quality vacuum pump that can handle all your pumping needs, look no further than the 2be1 202 Series China Pumps Liquid Water Ring Vacuum Pump. With its superior performance and advanced technology, this vacuum pump is sure to exceed your expectations.
 Our company is specialized in different kinds of products. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. To perfect our service, we make our products with good quality at the reasonable price.

Main applications                                                                             

These pumps are ideally suited for high demands of the process

  • Reactions    §
  • VCM recovery       
  • Crystallisation        
  • Distillation   §        
  • Evaporation          §        
  • Filtration      §        
  • Solvent recovery §        
  • Drying         §        
  • Extrusion     §        
  • Condenser evacuation §        

Main industries                                                                                                             


Features and benefits                                                                                                    


  • Heavy duty CPI version          §        
  • Large material variety available       
  • High efficiency      §        
  • Inlet pressures until 33 mbar   §
  • Wide selection of shaft seal options §        
  • Also with ATEX certification in Cat. 1 and 2       

Performance curves 



These performance curves are based on operating conditions with saturated air at a temperature of 20 °C (68 °F), operating water at a temperature of 15 °C (60 °F), and a discharge pressure of 1013 mbar (29.92 in Hg abs.) with a tolerance of + 5 %, acc. to PNEUROP 6612.
Operating conditions based on different temperatures than stated abovce, often result in increased capacities. Thus, a smaller pump might be selected. Please contact us for your specific requirements.
Calculation of individual performance curves is done acc. to individual specification requirements.
                                                      Inlet pressure abs.

Operating liquid rates (water) for various inlet pressures (1 m³/h = 4.4 US gpm):  




 mbar: m³/h  
200 24.1
250 24.7
300  25.4
350  24.2
400  23.0
450  21.5
500  20.1
550             18.4

 Tolerance + 20 % / Toleranz: + 20 %




Part No. Description   Material of construction –  
Teile Nr.
Grey cast iron
Grey cast iron / Bronze SS / Grey cast iron SS casting / Grey cast iron
Vacuum pump   
Spheroidal graphite cast iron
ASTM A 536
Grade 60-40-18 2)
Aluminium bronze
(ASTM B148-74) 2)
Stainless steel
ASTM A 276 316Ti 2)


Carbon steel 
ASTM A 572 Grade 50 2)

S355J2G3 (St52-3N) / 1.571 2)

Shaft bushing
Stainless steel centrifugal casting ASTM 532 III A 25% Cr 2)
Port plates
Carbon steel 
ASTM A 283 Grade C 2)
Stainless steel 
ASTM A 276 316L 2)
Carbon steel 
ASTM A 283 Grade C 2)
Grey cast iron 
ASTM A 48 Class 40 B 2)
Grey cast iron 
ASTM A 48 Class 40 B 2)
lined with stainless steel
ASTM A 283 Grade C + ASTM A 276 316Ti 2)
Grey cast iron 
ASTM A 48 Class 40 B 2)
End shields 1)
Seitenschilde  1)
Grey cast iron 
ASTM A 48 Class 30 B 2)
Packing ring
Ramie-fibre with PTFE
Sealing water distribution ring
Sperrkammer- ring
Fiber reinforces plastic


Extended scope of supply   
(F44 / F47)
Carbon steel 
ASTM A 283 Grade C 2)
S235JR (St37-2) / 1.0037 2)
Automatic  drain valve
Malleable cast iron


  1. Important note:   

    Also deliverable with medium contacted parts completely in stainless steel; please request.
Or comparable material. /

Model numbers and order information                                                                               
Scope of supply   Material of construction – Werkstoffkombination    1) (Details on page 4  –  Details siehe Seite 4) Weight
Grey cast iron Grey cast iron / Stainless steel /  SS casting / 
Bronze Grey cast iron Grey cast iron
Grauguss / Bronze CrNi-Stahl /
Order No. Order No. Order No. Order No.

appr. kg

Vacuum pump, basic design   
Inlet flange N1.0 at the top, discharge flange N2.0 at the  bottom
Housing w/o partition wall
Stuffing box    with internal sealant   2BE1 303-0BY4 2BE1 303-0CY4 2BE1 303-0EY4 2BE1 303-0MY4 1.400
Stuffing box with external   sealant supply   2BE1 303-0BY3 2BE1 303-0CY3 2BE1 303-0EY3 2BE1 303-0MY3 1.400
Mechanical seal, single acting,       with internal sealant supply
  2BE1 303-0BY2
2BE1 303-0CY2
2BE1 303-0EY2
2BE1 303-0MY2
Inlet flange N1.0 and  discharge flange N2.0 at  the top, with drain valves
Housing w/o partition wall
Stuffing box    with internal sealant   2BE1 303-0BY4-Z
2BE1 303-0CY4-Z
2BE1 303-0EY4-Z
2BE1 303-0MY4-Z
Stuffing box with external   sealant supply   2BE1 303-0BY3-Z
2BE1 303-0CY3-Z
2BE1 303-0EY3-Z
2BE1 303-0MY3-Z
Mechanical seal, single acting,       with internal sealant supply
  2BE1 303-0BY2-Z
2BE1 303-0CY2-Z
2BE1 303-0EY2-Z
2BE1 303-0MY2-Z
Extended scope of supply       
      Order code *) /   Kurzangabe *)
With mounted suction    manifold
Discharge flange N2.01 at the    top, with mounted suction    manifold and drain vales     F 47 62
Discharge flange N2.01 at the     top, with discharge-side    mounted liquid separator   and drain vales     F 43 110
Flange connection acc. to    ANSI B16.5     F 62  
With 2nd shaft extension for   tandem drive with 2 pumps     F 66  
With skids     F 45 43
With spray nozzles     F 41  
With cavitation proctection     F 80  
Counterclockwises rotation    with 2nd shaft end     K 98  
Increase of operating liquid     F 64  
Certified acc. to ATEX
   Category 2
   Category 1
Casing lined with    stainless steel
included /
included /


/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 12months
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Low Vacuum


vacuum pump

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

vacuum pump

How Do Vacuum Pumps Affect the Performance of Vacuum Chambers?

When it comes to the performance of vacuum chambers, vacuum pumps play a critical role. Here’s a detailed explanation:

Vacuum chambers are enclosed spaces designed to create and maintain a low-pressure environment. They are used in various industries and scientific applications, such as manufacturing, research, and material processing. Vacuum pumps are used to evacuate air and other gases from the chamber, creating a vacuum or low-pressure condition. The performance of vacuum chambers is directly influenced by the characteristics and operation of the vacuum pumps used.

Here are some key ways in which vacuum pumps affect the performance of vacuum chambers:

1. Achieving and Maintaining Vacuum Levels: The primary function of vacuum pumps is to create and maintain the desired vacuum level within the chamber. Vacuum pumps remove air and other gases, reducing the pressure inside the chamber. The efficiency and capacity of the vacuum pump determine how quickly the desired vacuum level is achieved and how well it is maintained. High-performance vacuum pumps can rapidly evacuate the chamber and maintain the desired vacuum level even when there are gas leaks or continuous gas production within the chamber.

2. Pumping Speed: The pumping speed of a vacuum pump refers to the volume of gas it can remove from the chamber per unit of time. The pumping speed affects the rate at which the chamber can be evacuated and the time required to achieve the desired vacuum level. A higher pumping speed allows for faster evacuation and shorter cycle times, improving the overall efficiency of the vacuum chamber.

3. Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that can be achieved in the chamber. It depends on the design and performance of the vacuum pump. Higher-quality vacuum pumps can achieve lower ultimate vacuum levels, which are important for applications requiring higher levels of vacuum or for processes that are sensitive to residual gases.

4. Leak Detection and Gas Removal: Vacuum pumps can also assist in leak detection and gas removal within the chamber. By continuously evacuating the chamber, any leaks or gas ingress can be identified and addressed promptly. This ensures that the chamber maintains the desired vacuum level and minimizes the presence of contaminants or unwanted gases.

5. Contamination Control: Some vacuum pumps, such as oil-sealed pumps, use lubricating fluids that can introduce contaminants into the chamber. These contaminants may be undesirable for certain applications, such as semiconductor manufacturing or research. Therefore, the choice of vacuum pump and its potential for introducing contaminants should be considered to maintain the required cleanliness and purity of the vacuum chamber.

6. Noise and Vibrations: Vacuum pumps can generate noise and vibrations during operation, which can impact the performance and usability of the vacuum chamber. Excessive noise or vibrations can interfere with delicate experiments, affect the accuracy of measurements, or cause mechanical stress on the chamber components. Selecting vacuum pumps with low noise and vibration levels is important for maintaining optimal chamber performance.

It’s important to note that the specific requirements and performance factors of a vacuum chamber can vary depending on the application. Different types of vacuum pumps, such as rotary vane pumps, dry pumps, or turbomolecular pumps, offer varying capabilities and features that cater to specific needs. The choice of vacuum pump should consider factors such as the desired vacuum level, pumping speed, ultimate vacuum, contamination control, noise and vibration levels, and compatibility with the chamber materials and gases used.

In summary, vacuum pumps have a significant impact on the performance of vacuum chambers. They enable the creation and maintenance of the desired vacuum level, affect the pumping speed and ultimate vacuum achieved, assist in leak detection and gas removal, and influence contamination control. Careful consideration of the vacuum pump selection ensures optimal chamber performance for various applications.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China supplier China Water Ring Vacuum Pump for Chemical, Chemical Fertilizer, Paper and Pharmaceutical Industry 2be3 70   with Best Sales China supplier China Water Ring Vacuum Pump for Chemical, Chemical Fertilizer, Paper and Pharmaceutical Industry 2be3 70   with Best Sales
editor by CX 2024-01-01