Seleccionar página

China Venta caliente Bomba de vacío para CNC Router Bomba de vacío de paletas rotativas de una etapa ac

Descripción del producto

Aplicación
Water supply:Pressure boostingfor main pipes and high-rise buildings 
Industrial pressure boosting: Water system,cleaning system,high pressure  washing system and firefighting system
Pressure boosting for pressure tank,sprinkling irrigation and trichling irrigation Air conditioner,cooling system and industrial cleaning 

Features
1.Economic vertical multistage pumps
2.Applicable for a wide scope of different termperatures, flow rates and pressure ranges 
3.Water inlet and outlet can be rotatedfor proper assembly in accordance with installation requirement
4.Easy installation and maintenance
5.Advanced hydraulic model design,featuring stable operation and high efficiency 
6.Cast iron water inlet and outlet with special anti-rust treatment 
7.High-strength engineering plastic flow passage components
8.Reliable stainless steel welded shaft 

Working Conditions
Liquid temperature:+5ºC~60ºC
Max.ambient temperature:+40ºC
Max.pressure:15bar 
Altitude: up to 1000 m
Standard voltage: Single-phase:220~240V/50Hz
                             Three-phase:380~415v/50Hz

Accessories Parameters

Part Fan cover Fan   Rear cover Bearing Stator Rotor          Gasket Flange Motor bracket Machanical seal Machanical seal Impeller Diffuser Last stage diffuser Last stage diffuser
Material 08F 08F Cast iron Optional Optional Optional Rubber Cast iron Aluminum Ceramic/Carbor AlSI 304 Plastic Plastic Plastic Plastic

TECHNICAL DATA FOR EVP(m)2

Single-phase Three-phase kW HP Q(1/min) 0 16.7 33.3 50 66.7
EVPm2-2 EVP2-2 0.37 0.5  (m) 24 23 18 13 6
EVPm2-3 EVP2-3 0.55 0.75 36 33 26 20 9
EVPm2-4 EVP2-4 0.75 1.0 48 45 35 26 11
EVPm2-5 EVP2-5 1.0 1.5 59 57 44 33 15
EVPm2-6 EVP2-6 1.0 1.5 69 65 52 37 18
EVPm2-7 EVP2-7 1.1 1.5 82 75 62 45 25
EVPm2-8 EVP2-8 1.5 2.0 94 87 72 52 28
EVPm2-9 EVP2-9 1.5 2.0 105 98 82 60 35
EVPm2-11 EVP2-11 1.8 2.5 130 119 98 69 37
  EVP2-13 2.2 3.0 153 142 115 80 39


TECHNICAL DATA FOR EVP(m)4

Modelo Power(P2) Q(m³/h) 0 1 2 3 4 5 6
Single-phase Three-phase kW HP Q(1/min) 0 16.7 33.3 50 66.7 83.3 100
EVPm4-2 EVP4-2 0.55 0.75 (m) 24 23 22 21 18 15 10
EVPm4-3 EVP4-3 0.75 1.0 37 36 34 33 29 24 16
EVPm4-4 EVP4-4 1.0 1.5 47 46 45 41 36 28 20
EVPm4-5 EVP4-5 1.5 2.0 61 58 57 55 48 39 29
EVPm4-6 EVP4-6 1.5 2.0 74  72 69 66 57 47 36
  EVP4-7 2.2 3.0 86  83 81 77 68 57 43
  EVP4-8 2.2 3.0 98  95 92 86 76 63 47
  EVP4-10 2.2 3.0 116 114 110 102 90 73 57
  EVP4-12 3.0 4.0 145 142 140 131 115 97 75

TECHNICAL DATA FOR EVP(m)6

Modelo Power(P2) Q(m³/h) 0 1 2 3 4 5 6 7 8 9 10
Single-phase Three-phase kW HP Q(U/min)  0 16.7 33.3 50 66.7 83.3 100 116.7 133.3 1510 166.7
EVPm6-3 EVP6-3 1.1 1.5 (m) 30 29.5 29 28.5 28 27 26 24.5 23 21 19
EVPm6-4 EVP6-4 1.5 2.0 40 38.5 37.5 37.3 37 36  34 33.5 32 30 27
  EVP6-5 2.2 3.0 50 49 48.5 48.3 48 45  43 42 41 39 36
.0EVP6-6 2.2 3.0 58 56 54 53.5 53 52  51 48 45 41 40
EVP6-7 3.0 4.0 68 67 66.5 65 63.5 62  60 58 56 54 51
  EVP6-8 3.0 4.0 78 75 73 72 71 70  68 65 62 59 55

TECHNICAL DATA FOR EVP(m)6H

Modelo Power (P2) Q (m³/h) 0 1 2 3 4.5 6 7.5 9 10.5
Single-phase Three-phase kW  HP Q (L/min) 0 16.7 33.3 50 75 100 125 150  175
EVPm6H-3 EVP6H-3  1.1 1.5 (m) 39 38  37 35 33 29  24 18 10
EVPm6H-4 EVP6H-4 1.5 2 52 51  49 47 44  39  32  25 14
EVPm6H-5 EVP6H-5 1.8 2.5 64 62  60 58 54  47  38  28 16
  EVP6H-6 2.2 3 76 74 71 68  63 56 45 34 20
EVP6H-8 3.0 4 103  100  97 95 90  80  66  50 31
EVP6H-10 4.0 5.5 130  127 124 121 114 103  86  66 41


TECHNICAL DATA FOR EVP10H

Modelo Power (P2) Q (m³/h) 0 2 4 6 8 10 12 14 16
Three-phase KW HP  Q (L/min) 0 33 67 100 133 167 200 233 267
EVP10H-3 3.0 4.0  H
(m)
56 55 54 52 49 46 42 39 29
EVP10H-4 4.0 5.5 75 74 72 70 67 64 60 53 43
EVP10H-5 5.5 7.5 93 91 87 84 81 77 72 64 55
EVP10H-6 5.5 7.5 113 110 107 104 100 96 87 78 68
EVP10H-7 7.5 10 132 128 124 120 116 112 103 93 80
EVP10H-8 7.5 10 150 147 143 139 134 127 120 108 92

FAQ:
Q: Do you supply sample? And leading time?
A:The sample can be sent to customer within 7-12 days. The batch order can be shipped within 35 days after receiving deposit payment.

Q:Where is your loading port?
A: HangZhou port, China

Q: Can you accept c ustomized products?
A: Yes we accept your specific order.

Q: What is your payment term?
A: 30% in advance, 70% balance the B/L or T/T.

Q: What is the warranty of the product?
A: We offer 1 year product life guarantee.

Q: What information shall I provide you when I need your offer?
A: Pump flow, total head, pump material (copper wire or aluminum wire? Stator length), voltage, frequency, etc.

Q: Will you supply any spare parts with the pumps?
A: Yes,Like tank, flexible hose, pressure switch, pressure gauge, brass connector, cable, etc.

Q: Is there any leakage problem of this pump?
A: Some factory may have such problem, but we solved it very well, by using good material of pump casing, O-ring, and they fit each other perfect. We use 8 screw on the pump head while others may use only 6 screw to save cost. We test 100% and long time for the pump head part, to make sure there is no leakage problem.

Q: Where did you export to?
A: We export to more than 50 countries, for example, Israel, South Africa, Germany, Poland, Spain, Vietnam, Malaysia, Russia, Thailand, Mexico, Brazil, Chile, etc.

Q: Can I order some accessories with the pump?
A: pressure tank, flexible hose, 5-way connector, pressure gauge, pressure controller and assemble

Q: Can the pump be made by customized voltage and frequency ?
A: Yes, 220-240V, 110V, 50Hz, 60Hz,,all OK!

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Servicio postventa: 1 año
Garantía: 1 año
Max.Head: >150m
Muestras:
US$ 500/Piece
1 Pieza(Pedido Mínimo)

|

Pedir muestra

Personalización:
Disponible

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Gastos de envío:

Flete estimado por unidad.







sobre los gastos de envío y el plazo de entrega estimado.
Forma de pago:







 

Pago inicial



Pago completo
Moneda: US$
Devoluciones: Puede solicitar el reembolso hasta 30 días después de recibir los productos.

bomba de vacío

¿Pueden utilizarse las bombas de vacío en el sector aeroespacial?

Las bombas de vacío tienen diversas aplicaciones en el sector aeroespacial. He aquí una explicación detallada:

Las bombas de vacío desempeñan un papel crucial en varias áreas de la industria aeroespacial, ya que sirven de apoyo a diversos procesos y sistemas. Algunas de las aplicaciones clave de las bombas de vacío en el sector aeroespacial son:

1. Cámaras de simulación espacial: Las bombas de vacío se utilizan en cámaras de simulación espacial para reproducir las condiciones de baja presión que se experimentan en el espacio exterior. Estas cámaras se utilizan para probar y validar el rendimiento y la funcionalidad de los componentes y sistemas aeroespaciales en condiciones espaciales simuladas. Las bombas de vacío crean y mantienen el entorno de vacío necesario dentro de estas cámaras, lo que permite a ingenieros y científicos evaluar el comportamiento y la respuesta de los equipos aeroespaciales en condiciones similares a las del espacio.

2. Gestión del propulsante: En los sistemas de propulsión espacial, las bombas de vacío se emplean para la gestión de propulsantes. Ayudan en la transferencia, circulación y presurización de propulsantes, como combustibles líquidos para cohetes o fluidos criogénicos, tanto en vehículos de lanzamiento como en naves espaciales. Las bombas de vacío ayudan a crear los diferenciales de presión necesarios para el flujo y el control de los propulsores, garantizando un funcionamiento eficaz y fiable de los sistemas de propulsión.

3. Sistemas de control ambiental: Las bombas de vacío se utilizan en los sistemas de control ambiental de aeronaves y naves espaciales. Estos sistemas son responsables de mantener las condiciones atmosféricas deseadas, incluyendo la temperatura, la humedad y la presión de la cabina, para garantizar la comodidad, la seguridad y el bienestar de los miembros de la tripulación y los pasajeros. Las bombas de vacío se utilizan para regular y controlar la presión de la cabina, facilitando la circulación de aire fresco y manteniendo la calidad del aire deseada dentro de la aeronave o nave espacial.

4. Tecnología de satélites: Las bombas de vacío tienen numerosas aplicaciones en la tecnología de satélites. Se utilizan en la fabricación y comprobación de componentes de satélites, como sensores, detectores y dispositivos electrónicos. Las bombas de vacío ayudan a crear las condiciones de vacío necesarias para la deposición de películas finas, el tratamiento de superficies y los procesos de prueba, garantizando el rendimiento y la fiabilidad de los equipos de los satélites. Además, las bombas de vacío se emplean en los sistemas de propulsión de satélites para gestionar los propulsores y proporcionar empuje para las maniobras orbitales.

5. Aviónica e instrumentación: Las bombas de vacío intervienen en la producción y ensayo de sistemas de aviónica e instrumentación utilizados en aplicaciones aeroespaciales. Facilitan procesos como la deposición de películas finas, la encapsulación al vacío y el secado al vacío, garantizando la integridad y funcionalidad de los componentes y circuitos electrónicos. Las bombas de vacío también se utilizan en pruebas de fugas al vacío, donde ayudan a crear un entorno de vacío para detectar y localizar fugas en sistemas y componentes aeroespaciales.

6. Pruebas a gran altitud: Las bombas de vacío se utilizan en instalaciones de ensayo a gran altitud para simular las condiciones de baja presión que se dan a gran altitud. Estas instalaciones de ensayo se emplean para evaluar el rendimiento y la funcionalidad de equipos aeroespaciales, como motores, materiales y estructuras, en condiciones simuladas de gran altitud. Las bombas de vacío crean y controlan el entorno de baja presión necesario, lo que permite a los ingenieros e investigadores evaluar el comportamiento y la respuesta de los sistemas aeroespaciales en escenarios de gran altitud.

7. Pruebas de motores de cohetes: Las bombas de vacío son cruciales en las instalaciones de pruebas de motores de cohetes. Se utilizan para evacuar y mantener las condiciones de vacío en las cámaras o toberas de prueba de motores durante las pruebas de motores de cohetes. Al crear un entorno de vacío, estas bombas simulan las condiciones que experimentan los motores de cohetes en el vacío del espacio, lo que permite realizar pruebas y evaluaciones precisas del rendimiento, los niveles de empuje y la eficiencia de los motores.

Es importante tener en cuenta que las aplicaciones aeroespaciales suelen requerir bombas de vacío especializadas capaces de cumplir requisitos estrictos, como alta fiabilidad, baja desgasificación, compatibilidad con propulsores o fluidos criogénicos y resistencia a temperaturas y presiones extremas.

En resumen, las bombas de vacío se utilizan ampliamente en el sector aeroespacial para una amplia gama de aplicaciones, como cámaras de simulación espacial, gestión de propulsantes, sistemas de control medioambiental, tecnología de satélites, aviónica e instrumentación, pruebas a gran altitud y pruebas de motores de cohetes. Contribuyen al desarrollo, las pruebas y el funcionamiento de los equipos aeroespaciales, garantizando un rendimiento, una fiabilidad y una seguridad óptimos.

bomba de vacío

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

bomba de vacío

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China Venta caliente Bomba de vacío para CNC Router Bomba de vacío de paletas rotativas de una etapa acChina Venta caliente Bomba de vacío para CNC Router Bomba de vacío de paletas rotativas de una etapa ac
editor by CX 2023-12-23

es_ESES