اختر صفحة

China Hot selling 4.5kw CHINAMFG Rotary Vane Vacuum Pump for Vacuum Power Testing vacuum pump design

Product Description

XD Technical

        Parameters

Model

   XD-571   XD-040   XD-063   XD-100   XD-160   XD-202   XD-250    XD-302

        Pumping rate

 (m³/h)

20 40  63 100  160 202 250 302

        PressureLimit

(mbar)

  0.1~0.5  0.1~0.5 0.1~0.5  0.1~0.5  0.5 0.1  0.1  0.1

MotorPower

(KW)

0.75 (single phase0.9Kw 1.5 2.2  3  4.5 4.5  5.5  7.5

Motor Speed

            (r/min)

2880 1440  1440 1440 1440 1440  1440  1440

  Noise (db)

≤62 ≤65  ≤65 ≤67  ≤70  ≤72  ≤73   ≤75

Allowable steam pressure

   (mbar)

40 40  40  40    40    40   40   40

Working water steam (Kg/h)

 0.3 0.3   1  1.6     2.5     4   4.5   5

Working

temperature

 (ºC)

82 80   80    84     95   95    81    83

Oil volume

           

(L)

0.5 1   2    2     5    5   7    7

Weight

         

(kg)

13 40   65     78   140    140   185   201

Air intake thread

Rp3/4″ Rp11/4″ Rp11/4″ Rp11/4″ Rp2″  Rp2″  Rp2″ Rp2″

Overall dimensions

L*W*H

650*300*280 650*300*280 650*430*295 720*430*295 850*505*440 850*505*440 980*560*440 101*560*440

Product Description

XD series vacuum pump is a single-stage rotary vane oil-sealed vacuum pump, which is 1 of main low and medium vacuum equipments. It can be used separately and be as forepump of vacuum pump, mechanical booster pump, and turbo molecular pump.

XD series vacuum pumps are available for low and medium vacuum fields, which are mainly used for pumping air and other dry gases rather than corrosive, toxic, flammable and explosive gases. Furthermore, they cannot pump the gases containing tiny particles or dust and cannot transport other small objects.

XD series vacuum pumps can work for long term in the well-ventilated room with ambient temperature of 5-30 ºC and with humidity ≤80%. In addition to the above applications, the XD series vacuum pumps can be available other applications, such as:

1. To increase the amount of the pumping gas and to improve the vacuum degree, please combine with Roots pumps to form a unit for this.

2. If pumping moist air or condensable gas, the condenser can be installed before the vacuum pump and the gas ballast valve is installed on the vacuum pump.

3. If pumping the gases containing dust particles, the dust filters can be installed in front of the vacuum pump.

4. If pumping the corrosive gases, the corrosion-proof gas filter can be installed in front of the vacuum pump. 

                 
Product’s Application

Product Display

Packaging Show

 

Company Power

 

FAQ

1.Q:Are you a manufacturer or trading company?

   A: We are a professional vacuum pump manufacturer with over 32 year experience. We have 2 factories now which cover more than 33333 square meters,we have rich experience in CHINAMFG liquid industry , Welcome to visit our factory at your time.

2.Q:Do you have minimum order quantity request?

   A: for spare parts we have no MOQ,but for whole set equipment of course 1 set is the minimum.

3.Q:Do you have certificates?

    A: Yes, we have CE, ISO,SGS.etc. certificates.

5.Q:How to pay?

      A:T/T and Alibaba Payment is acceptable.

6.Q:How to pack the products?

   A: We use standard export package. If you have special package requirements, we will pack as you required, but the fees will be paid by customers.

7.Q: What about your delivery time?

   A: It depends on your pump quantity. Generally 15 days after we receive the prepayment. We will confirm you again when we start to produce.

8.Q:How to install after the equipment arriving destination?

   A: We will sent the operating instruction with goods to you.Please strictly follow the instructions for installation

9.Q: How long does your product quality warranty last?
   A: 12 months for all our products against any non-artificial quality problem since the product leave our factory.

10.Q: What will you do with quality complaint?

     A: We have a complete set of microcomputer controlled testing system(All products are subject to tested before delivery. No product that failed performance test leaves our factory.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Acting Form: Single-Acting
Type: Vane Pump
Displacement: Variable Pump
Performance: Health
Certification: CE, ISO
Application: Lifting,Sticking,Loading and Unloading
Customization:
Available

|

vacuum pump

What Is the Vacuum Level and How Is It Measured in Vacuum Pumps?

The vacuum level refers to the degree of pressure below atmospheric pressure in a vacuum system. It indicates the level of “emptiness” or the absence of gas molecules in the system. Here’s a detailed explanation of vacuum level measurement in vacuum pumps:

Vacuum level is typically measured using pressure units that represent the difference between the pressure in the vacuum system and atmospheric pressure. The most common unit of measurement for vacuum level is the Pascal (Pa), which is the SI unit. Other commonly used units include Torr, millibar (mbar), and inches of mercury (inHg).

Vacuum pumps are equipped with pressure sensors or gauges that measure the pressure within the vacuum system. These gauges are specifically designed to measure the low pressures encountered in vacuum applications. There are several types of pressure gauges used for measuring vacuum levels:

1. Pirani Gauge: Pirani gauges operate based on the thermal conductivity of gases. They consist of a heated element exposed to the vacuum environment. As gas molecules collide with the heated element, they transfer heat away, causing a change in temperature. By measuring the change in temperature, the pressure can be inferred, allowing the determination of the vacuum level.

2. Thermocouple Gauge: Thermocouple gauges utilize the thermal conductivity of gases similar to Pirani gauges. They consist of two dissimilar metal wires joined together, forming a thermocouple. As gas molecules collide with the thermocouple, they cause a temperature difference between the wires, generating a voltage. The voltage is proportional to the pressure and can be calibrated to provide a reading of the vacuum level.

3. Capacitance Manometer: Capacitance manometers measure pressure by detecting the change in capacitance between two electrodes caused by the deflection of a flexible diaphragm. As the pressure in the vacuum system changes, the diaphragm moves, altering the capacitance and providing a measurement of the vacuum level.

4. Ionization Gauge: Ionization gauges operate by ionizing gas molecules in the vacuum system and measuring the resulting electrical current. The ion current is proportional to the pressure, allowing the determination of the vacuum level. There are different types of ionization gauges, such as hot cathode, cold cathode, and Bayard-Alpert gauges.

5. Baratron Gauge: Baratron gauges utilize the principle of capacitance manometry but with a different design. They consist of a pressure-sensing diaphragm separated by a small gap from a reference electrode. The pressure difference between the vacuum system and the reference electrode causes the diaphragm to deflect, changing the capacitance and providing a measurement of the vacuum level.

It’s important to note that different types of vacuum pumps may have different pressure ranges and may require specific pressure gauges suitable for their operating conditions. Additionally, vacuum pumps are often equipped with multiple gauges to provide information about the pressure at different stages of the pumping process or in different parts of the system.

In summary, vacuum level refers to the pressure below atmospheric pressure in a vacuum system. It is measured using pressure gauges specifically designed for low-pressure environments. Common types of pressure gauges used in vacuum pumps include Pirani gauges, thermocouple gauges, capacitance manometers, ionization gauges, and Baratron gauges.

\vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China Hot selling 4.5kw CHINAMFG Rotary Vane Vacuum Pump for Vacuum Power Testing   vacuum pump design		China Hot selling 4.5kw CHINAMFG Rotary Vane Vacuum Pump for Vacuum Power Testing   vacuum pump design
editor by Dream 2024-04-29

arAR