选择页面

China Custom 2BV2 Pressure Gas Steam Fluid Liquid Water Ring Vacuum Pump with Great quality

产品说明

Introduction of 2BV2 High Pressure Gas Steam Fluid Liquid Water Ring Vacuum Pump

2BV2 High Pressure Gas Steam Fluid Liquid Water Ring Vacuum Pumps are suitable for pumping the gases and steam. Its suction pressure can reach 33mbar (abs) (i.e. 97 % vacuum degree). If the transformer oil is used as the operating liquid, these pumps are called oil ring vacuum pump and the suction pressure can reach 6.7mbar (abs) (i.e. 99 % vacuum degree). So the oil ring vacuum pumps can replace the reciprocated vacuum pumps completely. When the liquid ring vacuum pumps work under the condition near the limited vacuum for a long time, it is necessary to couple with the cavitation protection pipe in order to get rid of the screaming and protect the pump.

When the compressors work, the maximum pressure is 0.26MPa(abs). And the higher of discharge pressure, the larger of the power of the compressors. So it is necessary that the data of the discharge pressure is provided to choose the proper motor.
2BV series water ring vacuum pumps and compressors will replace the SK and 2SK series water ring pumps and the W, WY, WL series reciprocated vacuum pumps completely with their superior performance and advantages.

2BV2-Ex,2BV6 series water ring vacuum pumps and compressors are mainly used for pumping the explosive gases or work in the flammable and explosive environment. The technical parameter of each type is the same as the corresponding type of the 2BV2 or 2BV5 series products.
2BV series stainless steel pumps can be used under the conditions with higher requirements for the corrosive-proof or the lustration.

According to the working situation, the material of all the parts where the liquid flows (i.e. pump casing, pump cover, port plate, impeller)are made of various stainless steel as bellow:

SUS304(0Cr18Ni9)
SUS316(0Cr17Ni12Mo2)
SUS316L(00Cr17Ni14Mo2)
The material of the shaft is 2Cr13 or 0Cr18Ni12Mo2Ti
The mechanical seals are used the John Crane products and the seals material is optional for FPM or PTFE.
 
Comparing with the SK, 2SK, SZ water ring vacuum pumps, the 2BV series products possess the characteristics as bellow:
The close-coupled design is convenient to install and can save space.
The standard seals are all used the John Crane mechanical seals.
2BV series products have the cavitation protection port. When they work under the condition near the limited vacuum, the cavitation protect port opens (or connects with the separator)to get rid of the screaming to protect the pump.
Aluminium bronze impeller is of high intensity and wearing well. The erosive-proof capacity of the pump can be improved by using it. If the parts where the liquid flows are made of the stainless steel,the pumps can be used under the more rigorous condition.
The unique design of the discharge port can protect the pump from the over-pressure to ensure the best efficient performance in the working range of the pump.
The motors are all adopted Y2 series products. The protection class is IP54 or IP55 (normal is IP44) and the insulation grade is F.
The bearings are all used the imported products with brand name of NTN or NSK.

Item Water Ring Vacuum Pump

 

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

售后服务: Have
保修: 1 年
Max.Head: <10m
Max.Capacity: <50 L/min
Pressure Medium: Water
类型 Desktop
定制:
可用

|

真空泵

如何维护真空泵并排除故障?

真空泵的维护和故障排除对于确保其最佳性能和使用寿命至关重要。以下是详细说明:

真空泵的维护:

1.定期检查:定期对泵进行目视检查,检查是否有任何损坏、泄漏或异常磨损的迹象。检查电机、皮带、联轴器和其他组件是否正确对齐和处于正常状态。

2.润滑:遵循制造商的润滑指南。某些真空泵需要定期换油或润滑活动部件。确保使用正确类型和数量的润滑油。

3.油位检查:监控油封泵的油位,并将其保持在建议范围内。必要时按照制造商的说明添加或更换机油。

4.过滤器维护:定期清洁或更换过滤器,以防止堵塞并确保气流正常。过滤器堵塞会影响泵的性能并增加能耗。

5.冷却系统:如果真空泵有冷却系统,则应定期检查其清洁度和功能是否正常。根据需要清洁或更换冷却部件,以防止过热。

6.密封件和垫圈:检查密封件和垫圈是否有磨损或泄漏迹象。及时更换任何损坏或磨损的密封件,以保持气密性。

7.阀门维护:如果真空泵包括阀门,请定期检查和清洁,以确保正常运行并防止堵塞。

8.振动和噪音:监测泵是否有过度振动或异常噪音,这可能表明存在偏差、轴承磨损或其他机械问题。及时处理这些问题,防止进一步损坏。

排除真空泵问题:

1.真空度不足:如果泵未达到所需的真空度,请检查系统中是否存在泄漏、密封不当或密封件磨损。检查阀门、连接处和密封件是否泄漏,并根据需要进行修理或更换。

2.性能不佳:如果泵的性能不佳,请检查过滤器是否堵塞、润滑是否不足或部件是否磨损。清洁或更换过滤器,确保适当的润滑,必要时更换磨损的部件。

3.过热:如果泵过热,检查冷却系统是否堵塞或气流不足。清洁或更换冷却部件,并确保泵周围通风良好。

4.噪音或振动过大:噪音或振动过大可能表示对准不准、轴承磨损或其他机械问题。检查并修理或更换损坏或磨损的部件。确保旋转部件的正确对准和平衡。

5.电机问题:如果泵电机无法启动或运行不稳定,请检查电源、电气连接和电机部件。使用适当的电气测试设备测试电机,必要时咨询电工或电机专家。

6.耗油量过大:如果泵的耗油量很大,请检查是否有泄漏或其他可能导致机油损失的问题。检查密封件、垫圈和连接处是否泄漏,并根据需要进行修理。

7.异常气味:异常气味(如烧焦味)可能表示过热或其他机械故障。请及时处理,必要时咨询技术人员。

8.制造商指南:请务必参考制造商针对您的真空泵型号提供的维护和故障排除指南和建议。遵循规定的维护计划,必要时寻求专业协助。

遵循正确的维护程序并及时解决任何故障问题,就能确保真空泵的可靠运行和使用寿命。

真空泵

How Do Vacuum Pumps Impact the Quality of 3D Printing?

Vacuum pumps play a significant role in improving the quality and performance of 3D printing processes. Here’s a detailed explanation:

3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by depositing successive layers of material. Vacuum pumps are utilized in various aspects of 3D printing to enhance the overall quality, accuracy, and reliability of printed parts. Here are some key ways in which vacuum pumps impact 3D printing:

1. Material Handling and Filtration: Vacuum pumps are used in 3D printing systems to handle and control the flow of materials. They create the necessary suction force to transport powdered materials, such as polymers or metal powders, from storage containers to the printing chamber. Vacuum systems also assist in filtering and removing unwanted particles or impurities from the material, ensuring the purity and consistency of the feedstock. This helps to prevent clogging or contamination issues during the printing process.

2. Build Plate Adhesion: Proper adhesion of the printed object to the build plate is crucial for achieving dimensional accuracy and preventing warping or detachment during the printing process. Vacuum pumps are employed to create a vacuum environment or suction force that securely holds the build plate and ensures firm adhesion between the first layer of the printed object and the build surface. This promotes stability and minimizes the risk of layer shifting or deformation during the printing process.

3. Material Drying: Many 3D printing materials, such as filament or powdered polymers, can absorb moisture from the surrounding environment. Moisture-contaminated materials can lead to poor print quality, reduced mechanical properties, or defects in the printed parts. Vacuum pumps with integrated drying capabilities can be employed to create a low-pressure environment, effectively removing moisture from the materials before they are used in the printing process. This ensures the dryness and quality of the materials, resulting in improved print outcomes.

4. Resin Handling in Stereolithography (SLA): In SLA 3D printing, a liquid resin is selectively cured using light sources to create the desired object. Vacuum pumps are utilized to facilitate the resin handling process. They can be employed to degas or remove air bubbles from the liquid resin, ensuring a smooth and bubble-free flow during material dispensing. This helps to prevent defects and imperfections caused by trapped air or bubbles in the final printed part.

5. Enclosure Pressure Control: Some 3D printing processes, such as selective laser sintering (SLS) or binder jetting, require the printing chamber to be maintained at a specific pressure or controlled atmosphere. Vacuum pumps are used to create a controlled low-pressure or vacuum environment within the printing chamber, enabling precise pressure regulation and maintaining the desired conditions for optimal printing results. This control over the printing environment helps to prevent oxidation, improve material flow, and enhance the quality and consistency of printed parts.

6. Post-Processing and Cleaning: Vacuum pumps can also aid in post-processing steps and cleaning of 3D printed parts. For instance, in processes like support material removal or surface finishing, vacuum systems can assist in the removal of residual support structures or excess powder from printed objects. They can also be employed in vacuum-based cleaning methods, such as vapor smoothing, to achieve smoother surface finishes and enhance the aesthetics of the printed parts.

7. System Maintenance and Filtration: Vacuum pumps used in 3D printing systems require regular maintenance and proper filtration to ensure their efficient and reliable operation. Effective filtration systems within the vacuum pumps help to remove any contaminants or particles generated during printing, preventing their circulation and potential deposition on the printed parts. This helps to maintain the cleanliness of the printing environment and minimize the risk of defects or impurities in the final printed objects.

In summary, vacuum pumps have a significant impact on the quality of 3D printing. They contribute to material handling and filtration, build plate adhesion, material drying, resin handling in SLA, enclosure pressure control, post-processing and cleaning, as well as system maintenance and filtration. By utilizing vacuum pumps in these critical areas, 3D printing processes can achieve improved accuracy, dimensional stability, material quality, and overall print quality.

真空泵

How Do You Choose the Right Size Vacuum Pump for a Specific Application?

Choosing the right size vacuum pump for a specific application involves considering several factors to ensure optimal performance and efficiency. Here’s a detailed explanation:

1. Required Vacuum Level: The first consideration is the desired vacuum level for your application. Different applications have varying vacuum level requirements, ranging from low vacuum to high vacuum or even ultra-high vacuum. Determine the specific vacuum level needed, such as microns of mercury (mmHg) or pascals (Pa), and choose a vacuum pump capable of achieving and maintaining that level.

2. Pumping Speed: The pumping speed, also known as the displacement or flow rate, is the volume of gas a vacuum pump can remove from a system per unit of time. It is typically expressed in liters per second (L/s) or cubic feet per minute (CFM). Consider the required pumping speed for your application, which depends on factors such as the volume of the system, the gas load, and the desired evacuation time.

3. Gas Load and Composition: The type and composition of the gas or vapor being pumped play a significant role in selecting the right vacuum pump. Different pumps have varying capabilities and compatibilities with specific gases. Some pumps may be suitable for pumping only non-reactive gases, while others can handle corrosive gases or vapors. Consider the gas load and its potential impact on the pump’s performance and materials of construction.

4. Backing Pump Requirements: In some applications, a vacuum pump may require a backing pump to reach and maintain the desired vacuum level. A backing pump provides a rough vacuum, which is then further processed by the primary vacuum pump. Consider whether your application requires a backing pump and ensure compatibility and proper sizing between the primary pump and the backing pump.

5. System Leakage: Evaluate the potential leakage in your system. If your system has significant leakage, you may need a vacuum pump with a higher pumping speed to compensate for the continuous influx of gas. Additionally, consider the impact of leakage on the required vacuum level and the pump’s ability to maintain it.

6. Power Requirements and Operating Cost: Consider the power requirements of the vacuum pump and ensure that your facility can provide the necessary electrical supply. Additionally, assess the operating cost, including energy consumption and maintenance requirements, to choose a pump that aligns with your budget and operational considerations.

7. Size and Space Constraints: Take into account the physical size of the vacuum pump and whether it can fit within the available space in your facility. Consider factors such as pump dimensions, weight, and the need for any additional accessories or support equipment.

8. Manufacturer’s Recommendations and Expert Advice: Consult the manufacturer’s specifications, guidelines, and recommendations for selecting the right pump for your specific application. Additionally, seek expert advice from vacuum pump specialists or engineers who can provide insights based on their experience and knowledge.

By considering these factors and evaluating the specific requirements of your application, you can select the right size vacuum pump that meets the desired vacuum level, pumping speed, gas compatibility, and other essential criteria. Choosing the appropriate vacuum pump ensures efficient operation, optimal performance, and longevity for your application.

China Custom 2BV2 Pressure Gas Steam Fluid Liquid Water Ring Vacuum Pump   with Great quality China Custom 2BV2 Pressure Gas Steam Fluid Liquid Water Ring Vacuum Pump   with Great quality
editor by CX 2024-02-16

zh_CNZH