选择页面

China best Rotary Vane Vacuum Pump Price vacuum pump ac

产品说明

Rotary vane vacuum pump price

Features:

YB Self-priming rotary vane pump with internal by-pass valve.

The pumps use a rotor with sliding vanes to draw the liquid.

The material of construction is nodular iron with sliding vanes built in a special self lubricating material.

Due to its efficiency the pumps can handle viscous and also volatile liquids and require less horsepower than other equivalent pumps.

Application:

Fuel oil delivery truck,Fleet refueling,Lube oil,Aviation refuelers,Transport of Petro Chemicals, gasoline, biofuels, solvents and any more. 

 

 Technical Specification

 模型

 YB-50

 YB-65

 YB-80

 YB-100

 尺寸

 50mm/2″

 65mm/2 1/2″

 80mm/3″

 100mm/4″

 Pump Speed

 400~640RPM

 400~640RPM

 400~640RPM

 500RPM

 Max. Flow Rate

 150~300L/Min

 300~500L/Min

 600~1000L/Min

 1500~1900L/Min

 真空

 0.5Bar

 Working Pressure

 5Bar

 Motor Power  2.2KW  4KW  7.5KW   18.5KW
 尺寸  44×35×35cm  46×34×37cm  49×42×42cm  58×55×61cm
 Net Weight  31KG  40KG  68KG  160KG
 Gross Weight  34KG  47KG  74KG  178KG
 包装  1pc/Wooden Case 

常见问题

 1.What is MOQ?

usually 1 set,and we can delivery by fast air express which not occupy space and not heavy for transport

2.Can you also OEM OR ODM for us?

Yes,we customize logo and brand according to customer requirement.

 
3.How about your machine quality, we are worry about the quality?

We are more than 30 years manufacturing experience of different kinds of flow meters.We strictly manufacture and manage according to IOS9001:2000 System.and can match all the CE standard or more strict standard.our machines are running well in more than 30 countries

/* 2571 年 1 月 22 日 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

售后服务: Sales Service Available
保修: One Year
Flow Rate: Variable Pump
类型 Self-priming Oil Pump
Drive: Electric
Performance: High Pressure

真空泵

Can Vacuum Pumps Be Used for Vacuum Packaging?

Yes, vacuum pumps can be used for vacuum packaging. Here’s a detailed explanation:

Vacuum packaging is a method used to remove air from a package or container, creating a vacuum environment. This process helps to extend the shelf life of perishable products, prevent spoilage, and maintain product freshness. Vacuum pumps play a crucial role in achieving the desired vacuum level for effective packaging.

When it comes to vacuum packaging, there are primarily two types of vacuum pumps commonly used:

1. Single-Stage Vacuum Pumps: Single-stage vacuum pumps are commonly used for vacuum packaging applications. These pumps use a single rotating vane or piston to create a vacuum. They can achieve moderate vacuum levels suitable for most packaging requirements. Single-stage pumps are relatively simple in design, compact, and cost-effective.

2. Rotary Vane Vacuum Pumps: Rotary vane vacuum pumps are another popular choice for vacuum packaging. These pumps utilize multiple vanes mounted on a rotor to create a vacuum. They offer higher vacuum levels compared to single-stage pumps, making them suitable for applications that require deeper levels of vacuum. Rotary vane pumps are known for their reliability, consistent performance, and durability.

When using vacuum pumps for vacuum packaging, the following steps are typically involved:

1. Preparation: Ensure that the packaging material, such as vacuum bags or containers, is suitable for vacuum packaging and can withstand the vacuum pressure without leakage. Place the product to be packaged inside the appropriate packaging material.

2. Sealing: Properly seal the packaging material, either by heat sealing or using specialized vacuum sealing equipment. This ensures an airtight enclosure for the product.

3. Vacuum Pump Operation: Connect the vacuum pump to the packaging equipment or directly to the packaging material. Start the vacuum pump to initiate the vacuuming process. The pump will remove the air from the packaging, creating a vacuum environment.

4. Vacuum Level Control: Monitor the vacuum level during the packaging process using pressure gauges or vacuum sensors. Depending on the specific packaging requirements, adjust the vacuum level accordingly. The goal is to achieve the desired vacuum level suitable for the product being packaged.

5. Sealing and Closure: Once the desired vacuum level is reached, seal the packaging material completely to maintain the vacuum environment. This can be done by heat sealing the packaging material or using specialized sealing mechanisms designed for vacuum packaging.

6. Product Labeling and Storage: After sealing, label the packaged product as necessary and store it appropriately, considering factors such as temperature, humidity, and light exposure, to maximize product shelf life.

It’s important to note that the specific vacuum level required for vacuum packaging may vary depending on the product being packaged. Some products may require a partial vacuum, while others may require a more stringent vacuum level. The choice of vacuum pump and the control mechanisms employed will depend on the specific vacuum packaging requirements.

Vacuum pumps are widely used in various industries for vacuum packaging applications, including food and beverage, pharmaceuticals, electronics, and more. They provide an efficient and reliable means of creating a vacuum environment, helping to preserve product quality and extend shelf life.

真空泵

Considerations for Selecting a Vacuum Pump for Cleanroom Applications

When it comes to selecting a vacuum pump for cleanroom applications, several considerations should be taken into account. Here’s a detailed explanation:

Cleanrooms are controlled environments used in industries such as semiconductor manufacturing, pharmaceuticals, biotechnology, and microelectronics. These environments require strict adherence to cleanliness and particle control standards to prevent contamination of sensitive processes or products. Selecting the right vacuum pump for cleanroom applications is crucial to maintain the required level of cleanliness and minimize the introduction of contaminants. Here are some key considerations:

1. Cleanliness: The cleanliness of the vacuum pump is of utmost importance in cleanroom applications. The pump should be designed and constructed to minimize the generation and release of particles, oil vapors, or other contaminants into the cleanroom environment. Oil-free or dry vacuum pumps are commonly preferred in cleanroom applications as they eliminate the risk of oil contamination. Additionally, pumps with smooth surfaces and minimal crevices are easier to clean and maintain, reducing the potential for particle buildup.

2. Outgassing: Outgassing refers to the release of gases or vapors from the surfaces of materials, including the vacuum pump itself. In cleanroom applications, it is crucial to select a vacuum pump with low outgassing characteristics to prevent the introduction of contaminants into the environment. Vacuum pumps specifically designed for cleanroom use often undergo special treatments or use materials with low outgassing properties to minimize this effect.

3. Particle Generation: Vacuum pumps can generate particles due to the friction and wear of moving parts, such as rotors or vanes. These particles can become a source of contamination in cleanrooms. When selecting a vacuum pump for cleanroom applications, it is essential to consider the pump’s particle generation level and choose pumps that have been designed and tested to minimize particle emissions. Pumps with features like self-lubricating materials or advanced sealing mechanisms can help reduce particle generation.

4. Filtration and Exhaust Systems: The filtration and exhaust systems associated with the vacuum pump are critical for maintaining cleanroom standards. The vacuum pump should be equipped with efficient filters that can capture and remove any particles or contaminants generated during operation. High-quality filters, such as HEPA (High-Efficiency Particulate Air) filters, can effectively trap even the smallest particles. The exhaust system should be properly designed to ensure that filtered air is released outside the cleanroom or passes through additional filtration before being reintroduced into the environment.

5. Noise and Vibrations: Noise and vibrations generated by vacuum pumps can have an impact on cleanroom operations. Excessive noise can affect the working environment and compromise communication, while vibrations can potentially disrupt sensitive processes or equipment. It is advisable to choose vacuum pumps specifically designed for quiet operation and that incorporate measures to minimize vibrations. Pumps with noise-dampening features and vibration isolation systems can help maintain a quiet and stable cleanroom environment.

6. Compliance with Standards: Cleanroom applications often have specific industry standards or regulations that must be followed. When selecting a vacuum pump, it is important to ensure that it complies with relevant cleanroom standards and requirements. Considerations may include ISO cleanliness standards, cleanroom classification levels, and industry-specific guidelines for particle count, outgassing levels, or allowable noise levels. Manufacturers that provide documentation and certifications related to cleanroom suitability can help demonstrate compliance.

7. Maintenance and Serviceability: Proper maintenance and regular servicing of vacuum pumps are essential for their reliable and efficient operation. When choosing a vacuum pump for cleanroom applications, consider factors such as ease of maintenance, availability of spare parts, and access to service and support from the manufacturer. Pumps with user-friendly maintenance features, clear service instructions, and a responsive customer support network can help minimize downtime and ensure continued cleanroom performance.

In summary, selecting a vacuum pump for cleanroom applications requires careful consideration of factors such as cleanliness, outgassing characteristics, particle generation, filtration and exhaust systems, noise and vibrations, compliance with standards, and maintenance requirements. By choosing vacuum pumps designed specifically for cleanroom use and considering these key factors, cleanroom operators can maintain the required level of cleanliness and minimize the risk of contamination in their critical processes and products.

真空泵

暖通空调系统中真空泵的用途是什么?

在暖通空调(HVAC)系统中,真空泵起着至关重要的作用。下面是详细说明:

暖通空调系统中真空泵的作用是去除制冷剂管路和系统本身中的空气和湿气。暖通空调系统,尤其是依靠制冷的系统,需要在特定的压力和温度条件下运行,以促进热量的传递。为确保最佳性能和效率,必须从系统中排出任何不可冷凝的气体、空气和湿气。

以下是暖通空调系统中使用真空泵的主要原因:

1.除湿:由于系统安装、泄漏或维护不当等各种因素,暖通空调系统中可能存在湿气。当湿气与制冷剂结合时,会导致结冰、系统效率降低以及系统部件的潜在损坏等问题。真空泵通过创造低压环境来帮助去除湿气,从而使湿气沸腾并变成蒸汽,有效地将其从系统中抽空。

2.消除空气和不凝性气体:空气和不凝性气体(如氮气或氧气)可能在安装、维修过程中或通过泄漏进入暖通空调系统。这些气体会阻碍制冷过程、影响传热并降低系统性能。通过使用真空泵,技术人员可以排空空气和不凝性气体,确保系统在设计的制冷剂和压力水平下运行。

3.准备制冷剂充注:在向暖通空调系统充注制冷剂之前,关键是要抽真空,以清除任何杂质,确保系统清洁,为制冷剂的最佳循环做好准备。通过使用真空泵对系统进行抽真空,技术人员可确保制冷剂进入清洁可控的环境,从而降低系统故障的风险并提高整体效率。

4.泄漏检测:真空泵也用于暖通空调系统的泄漏检测。抽空系统后,技术人员可以监测压力是否保持稳定。如果压力明显下降,则表明存在泄漏,技术人员可在向系统注入制冷剂之前查明并修复泄漏。

总之,真空泵在暖通空调系统中起着至关重要的作用,它可以去除湿气、排除空气和不凝性气体、为制冷剂充注做好准备并帮助检测泄漏。这些功能有助于确保最佳的系统性能、能效和使用寿命,同时还能降低系统故障和损坏的风险。

China best Rotary Vane Vacuum Pump Price   vacuum pump acChina best Rotary Vane Vacuum Pump Price   vacuum pump ac
editor by CX 2024-03-02

zh_CNZH