Escolha uma Página

China wholesaler Cast Iron /Ss Materials Model No 2BV Blue Color Water Ring Vacuum Pump for Household vacuum pump brakes

Descrição do produto

Descrição do produto

2BV series WATER RING VACUUM PUMP from ZheJiang CHINAMFG (Group) Co., LTD is mainly composed by pump cover, impeller, shaft, motor and other components. The shaft is supported by 2 deep groove ball bearings lubricated by mechine oil or grease. Soft packing or mechanical sealing is used as sealing medium. It is carefully designed to suit various working conditions in strict accordance to national and international standards.


PACKING:

OUR Service

Your best 1 stop pump solution:

1.Pump Model Choice And Technical Parameters Count

According to you offer relevant equipment data, pipe condition,slurry character,working condition, through professional data calculate, so engineers can obtain accurate clear water performance parameters.

2.Structure Design And Wet Ends Materials study

According to you offer relevant equipment data, pipe condition,slurry character,working condition, through professional data calculate, so engineers can obtain accurate clear water performance parameters.

3.Mining System Design

EAST Pump provides pump system designs based on field data supplied by you,or when preferred,we will send engineers to your location to gather geological data necessary for designing a customized pumping system.

EAST Pump experienced pump engineers possess extensive knowledge of fluid and mechanical pumping systems. They provide optimized solutions including appropriate sized pumps, pipes, valves and various other system equipment,as well as employing the best suited material to lengthen life-cycle operation.

4.Attentive After Sales Service

EAST Pump offer all-round after sales service, send engineers guide for installation and training workers at scene, offer spare parts promptly.

Your Best Cooperative Partner, Not Only But Whole Supply Chain Management (Logistics)

EAST Pump Machinery as 1 of the best ALL KINDS OF pump manufacturer, we are not only focus on our own production only but also every details from every ring of our supply chain.

 

PERGUNTAS FREQUENTES

Q: Are you trading company or manufacturer ?

A: We are factory.Base on ZheJiang

Q: How long is your delivery time?

A: Generally it is 3-4 week if the goods are in regular product. If the products need recharge or not-standard,Need recheck delivery date with us.

Q: How is you min order quantity?

A: 1 sets

Q: What is your terms of payment ?

A: Payment<=116458551
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Max.Head: >150m
Max.Capacity: >400 L/min
Driving Type: Electric
Material: Cast Iron, Stainless Steel, Duplex Ss
Estrutura: Multistage Pump
Assembly: Booster Pump
Personalização:
Disponível

|

bomba de vácuo

Qual é o impacto da altitude no desempenho da bomba de vácuo?

O desempenho das bombas de vácuo pode ser influenciado pela altitude em que elas são operadas. Aqui está uma explicação detalhada:

Altitude refere-se à elevação ou altura acima do nível do mar. À medida que a altitude aumenta, a pressão atmosférica diminui. Essa diminuição da pressão atmosférica pode ter vários efeitos sobre o desempenho das bombas de vácuo:

1. Redução da capacidade de sucção: As bombas de vácuo dependem do diferencial de pressão entre o lado da sucção e o lado da descarga para criar um vácuo. Em altitudes mais elevadas, onde a pressão atmosférica é menor, o diferencial de pressão disponível para a bomba trabalhar é reduzido. Isso pode resultar em uma diminuição da capacidade de sucção da bomba de vácuo, o que significa que ela pode não ser capaz de atingir o mesmo nível de vácuo que atingiria em altitudes mais baixas.

2. Nível de vácuo final mais baixo: O nível de vácuo máximo, que representa a pressão mais baixa que uma bomba de vácuo pode atingir, também é afetado pela altitude. Como a pressão atmosférica diminui com o aumento da altitude, o nível de vácuo máximo que pode ser atingido por uma bomba de vácuo é limitado. A bomba pode ter dificuldade para atingir o mesmo nível de vácuo que atingiria no nível do mar ou em altitudes mais baixas.

3. Velocidade de bombeamento: A velocidade de bombeamento é uma medida da rapidez com que uma bomba de vácuo pode remover gases de um sistema. Em altitudes mais elevadas, a pressão atmosférica reduzida pode levar a uma diminuição na velocidade de bombeamento. Isso significa que a bomba de vácuo pode levar mais tempo para evacuar uma câmara ou sistema até o nível de vácuo desejado.

4. Aumento do consumo de energia: Para compensar a diminuição do diferencial de pressão e atingir o nível de vácuo desejado, uma bomba de vácuo operando em altitudes mais elevadas pode exigir maior consumo de energia. A bomba precisa trabalhar mais para superar a pressão atmosférica mais baixa e manter a capacidade de sucção necessária. Esse aumento no consumo de energia pode afetar a eficiência energética e os custos operacionais.

5. Variações de eficiência e desempenho: Diferentes tipos de bombas de vácuo podem apresentar diferentes graus de sensibilidade à altitude. As bombas de palhetas rotativas vedadas a óleo, por exemplo, podem apresentar variações de desempenho mais significativas em comparação com as bombas secas ou outras tecnologias de bombas. O projeto e os princípios operacionais da bomba de vácuo podem influenciar sua capacidade de manter o desempenho em altitudes mais elevadas.

É importante observar que os fabricantes de bombas de vácuo normalmente fornecem especificações e curvas de desempenho para suas bombas com base em condições padronizadas, geralmente no nível do mar ou próximo a ele. Ao operar uma bomba de vácuo em altitudes mais elevadas, é aconselhável consultar as diretrizes do fabricante e considerar quaisquer limitações ou ajustes relacionados à altitude que possam ser necessários.

Em resumo, a altitude em que uma bomba de vácuo opera pode ter um impacto em seu desempenho. A pressão atmosférica reduzida em altitudes mais elevadas pode resultar na diminuição da capacidade de sucção, em níveis mais baixos de vácuo final, na redução da velocidade de bombeamento e no possível aumento do consumo de energia. Compreender esses efeitos é fundamental para selecionar e operar bombas de vácuo de forma eficaz em diferentes ambientes de altitude.

bomba de vácuo

What Is the Role of Vacuum Pumps in Pharmaceutical Manufacturing?

Vacuum pumps play a crucial role in various aspects of pharmaceutical manufacturing. Here’s a detailed explanation:

Vacuum pumps are extensively used in pharmaceutical manufacturing processes to support a range of critical operations. Some of the key roles of vacuum pumps in pharmaceutical manufacturing include:

1. Drying and Evaporation: Vacuum pumps are employed in drying and evaporation processes within the pharmaceutical industry. They facilitate the removal of moisture or solvents from pharmaceutical products or intermediates. Vacuum drying chambers or evaporators utilize vacuum pumps to create low-pressure conditions, which lower the boiling points of liquids, allowing them to evaporate at lower temperatures. By applying vacuum, moisture or solvents can be efficiently removed from substances such as active pharmaceutical ingredients (APIs), granules, powders, or coatings, ensuring the desired product quality and stability.

2. Filtration and Filtrate Recovery: Vacuum pumps are used in filtration processes for the separation of solid-liquid mixtures. Vacuum filtration systems typically employ a filter medium, such as filter paper or membranes, to retain solids while allowing the liquid portion to pass through. By applying vacuum to the filtration apparatus, the liquid is drawn through the filter medium, leaving behind the solids. Vacuum pumps facilitate efficient filtration, speeding up the process and improving product quality. Additionally, vacuum pumps can aid in filtrate recovery by collecting and transferring the filtrate for further processing or reuse.

3. Distillation and Purification: Vacuum pumps are essential in distillation and purification processes within the pharmaceutical industry. Distillation involves the separation of liquid mixtures based on their different boiling points. By creating a vacuum environment, vacuum pumps lower the boiling points of the components, allowing them to vaporize and separate more easily. This enables efficient separation and purification of pharmaceutical compounds, including the removal of impurities or the isolation of specific components. Vacuum pumps are utilized in various distillation setups, such as rotary evaporators or thin film evaporators, to achieve precise control over the distillation conditions.

4. Freeze Drying (Lyophilization): Vacuum pumps are integral to the freeze drying process, also known as lyophilization. Lyophilization is a dehydration technique that involves the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. Vacuum pumps create a low-pressure environment in freeze drying chambers, allowing the frozen product to undergo sublimation. During sublimation, the frozen water or solvent directly transitions from the solid phase to the vapor phase, bypassing the liquid phase. Vacuum pumps facilitate efficient and controlled sublimation, leading to the production of stable, shelf-stable pharmaceutical products with extended shelf life.

5. Tablet and Capsule Manufacturing: Vacuum pumps are utilized in tablet and capsule manufacturing processes. They are involved in the creation of vacuum within tablet presses or capsule filling machines. By applying vacuum, the air is removed from the die cavity or capsule cavity, allowing for the precise filling of powders or granules. Vacuum pumps contribute to the production of uniform and well-formed tablets or capsules by ensuring accurate dosing and minimizing air entrapment, which can affect the final product quality.

6. Sterilization and Decontamination: Vacuum pumps are employed in sterilization and decontamination processes within the pharmaceutical industry. Autoclaves and sterilizers utilize vacuum pumps to create a vacuum environment before introducing steam or chemical sterilants. By removing air or gases from the chamber, vacuum pumps assist in achieving effective sterilization or decontamination by enhancing the penetration and distribution of sterilants. Vacuum pumps also aid in the removal of sterilants and residues after the sterilization process is complete.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, dry screw pumps, or liquid ring pumps, may be utilized in pharmaceutical manufacturing depending on the specific requirements of the process and the compatibility with pharmaceutical products.

In summary, vacuum pumps play a vital role in various stages of pharmaceutical manufacturing, including drying and evaporation, filtration and filtrate recovery, distillation and purification, freeze drying (lyophilization), tablet and capsule manufacturing, as well as sterilization and decontamination. By enabling efficient and controlled processes, vacuum pumps contribute to the production of high-quality pharmaceutical products, ensuring the desired characteristics, stability, and safety.

bomba de vácuo

Can Vacuum Pumps Be Used in the Medical Field?

Yes, vacuum pumps have a wide range of applications in the medical field. Here’s a detailed explanation:

Vacuum pumps play a crucial role in various medical applications, providing suction or creating controlled vacuum environments. Here are some key areas where vacuum pumps are used in the medical field:

1. Negative Pressure Wound Therapy (NPWT):

Vacuum pumps are extensively utilized in negative pressure wound therapy, a technique used to promote wound healing. In NPWT, a vacuum pump creates a controlled low-pressure environment within a wound dressing, facilitating the removal of excess fluid, promoting blood flow, and accelerating the healing process.

2. Surgical Suction:

Vacuum pumps are an integral part of surgical suction systems. They provide the necessary suction force to remove fluids, gases, or debris from the surgical site during procedures. Surgical suction helps maintain a clear field of view for surgeons, enhances tissue visualization, and contributes to a sterile operating environment.

3. Anesthesia:

In anesthesia machines, vacuum pumps are used to create suction for various purposes:

– Airway Suction: Vacuum pumps assist in airway suctioning to clear secretions or obstructions from the patient’s airway during anesthesia or emergency situations.

– Evacuation of Gases: Vacuum pumps aid in removing exhaled gases from the patient’s breathing circuit, ensuring the delivery of fresh gas mixtures and maintaining appropriate anesthesia levels.

4. Laboratory Equipment:

Vacuum pumps are essential components in various medical laboratory equipment:

– Vacuum Ovens: Vacuum pumps are used in vacuum drying ovens, which are utilized for controlled drying or heat treatment of sensitive materials, samples, or laboratory glassware.

– Centrifugal Concentrators: Vacuum pumps are employed in centrifugal concentrators to facilitate the concentration or dehydration of biological samples, such as DNA, proteins, or viruses.

– Freeze Dryers: Vacuum pumps play a vital role in freeze-drying processes, where samples are frozen and then subjected to vacuum conditions to remove water via sublimation, preserving the sample’s structure and integrity.

5. Medical Suction Devices:

Vacuum pumps are utilized in standalone medical suction devices, commonly found in hospitals, clinics, and emergency settings. These devices create suction required for various medical procedures, including:

– Suctioning of Respiratory Secretions: Vacuum pumps assist in removing respiratory secretions or excess fluids from the airways of patients who have difficulty coughing or clearing their airways effectively.

– Thoracic Drainage: Vacuum pumps are used in chest drainage systems to evacuate air or fluid from the pleural cavity, helping in the treatment of conditions such as pneumothorax or pleural effusion.

– Obstetrics and Gynecology: Vacuum pumps are employed in devices used for vacuum-assisted deliveries, such as vacuum extractors, to aid in the safe delivery of babies during childbirth.

6. Blood Collection and Processing:

Vacuum pumps are utilized in blood collection systems and blood processing equipment:

– Blood Collection Tubes: Vacuum pumps are responsible for creating the vacuum inside blood collection tubes, facilitating the collection of blood samples for diagnostic testing.

– Blood Separation and Centrifugation: In blood processing equipment, vacuum pumps assist in the separation of blood components, such as red blood cells, plasma, and platelets, for various medical procedures and treatments.

7. Medical Imaging:

Vacuum pumps are used in certain medical imaging techniques:

– Electron Microscopy: Electron microscopes, including scanning electron microscopes and transmission electron microscopes, require a vacuum environment for high-resolution imaging. Vacuum pumps are employed to maintain the necessary vacuum conditions within the microscope chambers.

These are just a few examples of the wide-ranging applications of vacuum pumps in the medical field. Their ability to create suction and controlled vacuum environments makes them indispensable in medical procedures, wound healing, laboratory processes, anesthesia, and various other medical applications.

China wholesaler Cast Iron /Ss Materials Model No 2BV Blue Color Water Ring Vacuum Pump for Household   vacuum pump brakesChina wholesaler Cast Iron /Ss Materials Model No 2BV Blue Color Water Ring Vacuum Pump for Household   vacuum pump brakes
editor by CX 2024-04-09

pt_BRPT