Escolha uma Página

Bomba de vácuo de aço inoxidável de alta qualidade para a indústria de papel da China freios da bomba de vácuo

Descrição do produto

Descrição da produção
A bomba de polpa de consistência média é adequada para a concentração de 6%-8% (polpa química, polpa semiquímica, polpa mecânica e polpa mecânica química, polpa wasto e fibra de polpa química, fibra de lama suja), temperatura de 120 ºC: 10-70 m.quantidade 36-800 m3 / h.lt adota um impulsor centrífugo espiral de palheta única, tem um desempenho muito bom no meio CHINAMFG, adequado para líquidos, lama e polpa espessa e grande CHINAMFG e bombeamento contínuo de polpa de fibra longa.

Princípio de funcionamento

O impulsor é montado excentricamente dentro da carcaça. Quando o impulsor gira na direção indicada na figura acima, o líquido é lançado para fora sob força centrífuga para formar um anel líquido que gira concentricamente com a carcaça. Como resultado. Uma área de bolsão crescente é desenvolvida entre o cubo e a superfície interna do anel líquido. À medida que a rotação prossegue do ponto "A" para o "B", a área de bolsões entre as palhetas adjacentes se torna progressivamente maior. E à medida que a rotação prossegue do ponto "C" para o ponto "A", a bolsa se torna menor, o gás é comprimido até atingir a pressão externa e, por fim, é ejetado pela porta de descarga.

Recurso principal
1. impulsores de soldagem são usados, a lâmina é usinada por molde de punção primário com linhas de moldagem racionais.
2. Todos os cubos são usinados, o que resolve fundamentalmente a questão do equilíbrio dinâmico.
3. o impulsor e o eixo da bomba são usinados pelo ajuste da interface de montagem do cabeçote com desempenho confiável e funcionamento estável. 4. o impulsor é tratado termicamente após a soldagem, a lâmina tem excelente tenacidade para garantir a resistência ao impacto e à flexão.
Bomba da série 5.2BEC com separador de gás, muitos locais com orifícios de aspiração e exaustão, tampa da bomba com válvulas de exaustão, janela de verificação e reparo.

Nossa vantagem

1. Impulsor de três lâminas totalmente aberto, canal de fluxo grande, bom desempenho sem entupimento.
2. Revestimentos resistentes ao desgaste nas extremidades de sucção e descarga do impulsor são usados para proteger a carcaça de correntes parasitas.
3. O novo design da capa protetora facilita a desmontagem.
4. Design de chassi totalmente novo, mais forte e mais conveniente para o ajuste do acoplamento.

Sobre nós
A HangZhou Sun Hong International Trading Co., Ltd. foi fundada em 2571 e se dedica principalmente ao negócio de importação e exportação de têxteis industriais e peças de máquinas de papel. Os negócios da empresa foram expandidos com sucesso para a América do Sul, o Sudeste Asiático e a Europa Central. No início de sua fundação, a empresa está posicionada em produtos baseados em tecnologia, produtos de alta qualidade e serviços adicionais íntimos, nosso compromisso constante com os clientes. Esperamos sinceramente que a CHINAMFG se junte a nós!

Serviço pós-venda: Garantia
Garantia: 1 ano
Óleo ou não: Óleo
Estrutura: Bomba de vácuo rotativa
Método do exaustor: Bomba de vácuo de aprisionamento
Grau de vácuo: Alto vácuo
Personalização:
Disponível

|

bomba de vácuo

Qual é o impacto da altitude no desempenho da bomba de vácuo?

O desempenho das bombas de vácuo pode ser influenciado pela altitude em que elas são operadas. Aqui está uma explicação detalhada:

Altitude refere-se à elevação ou altura acima do nível do mar. À medida que a altitude aumenta, a pressão atmosférica diminui. Essa diminuição da pressão atmosférica pode ter vários efeitos sobre o desempenho das bombas de vácuo:

1. Redução da capacidade de sucção: As bombas de vácuo dependem do diferencial de pressão entre o lado da sucção e o lado da descarga para criar um vácuo. Em altitudes mais elevadas, onde a pressão atmosférica é menor, o diferencial de pressão disponível para a bomba trabalhar é reduzido. Isso pode resultar em uma diminuição da capacidade de sucção da bomba de vácuo, o que significa que ela pode não ser capaz de atingir o mesmo nível de vácuo que atingiria em altitudes mais baixas.

2. Nível de vácuo final mais baixo: O nível de vácuo máximo, que representa a pressão mais baixa que uma bomba de vácuo pode atingir, também é afetado pela altitude. Como a pressão atmosférica diminui com o aumento da altitude, o nível de vácuo máximo que pode ser atingido por uma bomba de vácuo é limitado. A bomba pode ter dificuldade para atingir o mesmo nível de vácuo que atingiria no nível do mar ou em altitudes mais baixas.

3. Velocidade de bombeamento: A velocidade de bombeamento é uma medida da rapidez com que uma bomba de vácuo pode remover gases de um sistema. Em altitudes mais elevadas, a pressão atmosférica reduzida pode levar a uma diminuição na velocidade de bombeamento. Isso significa que a bomba de vácuo pode levar mais tempo para evacuar uma câmara ou sistema até o nível de vácuo desejado.

4. Aumento do consumo de energia: Para compensar a diminuição do diferencial de pressão e atingir o nível de vácuo desejado, uma bomba de vácuo operando em altitudes mais elevadas pode exigir maior consumo de energia. A bomba precisa trabalhar mais para superar a pressão atmosférica mais baixa e manter a capacidade de sucção necessária. Esse aumento no consumo de energia pode afetar a eficiência energética e os custos operacionais.

5. Variações de eficiência e desempenho: Diferentes tipos de bombas de vácuo podem apresentar diferentes graus de sensibilidade à altitude. As bombas de palhetas rotativas vedadas a óleo, por exemplo, podem apresentar variações de desempenho mais significativas em comparação com as bombas secas ou outras tecnologias de bombas. O projeto e os princípios operacionais da bomba de vácuo podem influenciar sua capacidade de manter o desempenho em altitudes mais elevadas.

É importante observar que os fabricantes de bombas de vácuo normalmente fornecem especificações e curvas de desempenho para suas bombas com base em condições padronizadas, geralmente no nível do mar ou próximo a ele. Ao operar uma bomba de vácuo em altitudes mais elevadas, é aconselhável consultar as diretrizes do fabricante e considerar quaisquer limitações ou ajustes relacionados à altitude que possam ser necessários.

Em resumo, a altitude em que uma bomba de vácuo opera pode ter um impacto em seu desempenho. A pressão atmosférica reduzida em altitudes mais elevadas pode resultar na diminuição da capacidade de sucção, em níveis mais baixos de vácuo final, na redução da velocidade de bombeamento e no possível aumento do consumo de energia. Compreender esses efeitos é fundamental para selecionar e operar bombas de vácuo de forma eficaz em diferentes ambientes de altitude.

bomba de vácuo

As bombas a vácuo podem ser usadas para a remediação do solo e da água subterrânea?

As bombas de vácuo são, de fato, amplamente utilizadas para a remediação de solos e águas subterrâneas. Aqui está uma explicação detalhada:

A remediação do solo e da água subterrânea refere-se ao processo de remoção de contaminantes do solo e da água subterrânea para restaurar a qualidade ambiental e proteger a saúde humana. As bombas de vácuo desempenham um papel crucial em várias técnicas de remediação, facilitando a extração e o tratamento de meios contaminados. Algumas das aplicações comuns das bombas de vácuo na remediação do solo e da água subterrânea incluem:

1. Extração de vapor do solo (SVE): A extração de vapor do solo é uma técnica de remediação amplamente utilizada para contaminantes voláteis presentes na subsuperfície. Ela envolve a extração de vapores do solo aplicando um vácuo na subsuperfície por meio de poços ou trincheiras. As bombas de vácuo criam um gradiente de pressão que induz o movimento dos vapores em direção aos pontos de extração. Os vapores extraídos são então tratados para remover ou destruir os contaminantes. As bombas de vácuo desempenham um papel fundamental na SVE, mantendo a pressão negativa necessária para aumentar a volatilização e a extração de contaminantes do solo.

2. Extração de fase dupla (DPE): A extração de fase dupla é um método de remediação usado para a extração simultânea de líquidos (como água subterrânea) e vapores (como compostos orgânicos voláteis) da subsuperfície. Bombas de vácuo são utilizadas para criar vácuo em poços ou pontos de extração, extraindo as fases líquida e de vapor. A água subterrânea e os vapores extraídos são então separados e tratados adequadamente. As bombas de vácuo são essenciais nos sistemas DPE para a extração eficiente e controlada de contaminantes nas fases líquida e de vapor.

3. Bombeamento e tratamento de águas subterrâneas: As bombas a vácuo também são empregadas na remediação de águas subterrâneas por meio do processo de bombeamento e tratamento. Elas são usadas para extrair águas subterrâneas contaminadas de poços ou trincheiras de recuperação. Ao criar um vácuo ou pressão negativa, as bombas de vácuo facilitam o fluxo da água subterrânea em direção aos pontos de extração. A água subterrânea extraída é então tratada para remover ou neutralizar os contaminantes antes de ser descarregada ou reinjetada no solo. As bombas de vácuo desempenham um papel fundamental na manutenção das taxas de fluxo e dos gradientes hidráulicos necessários para a extração e o tratamento eficazes das águas subterrâneas.

4. Pulverização de ar: A aspersão de ar é uma técnica de remediação usada para tratar águas subterrâneas e solos contaminados com compostos orgânicos voláteis (VOCs). Ela envolve a injeção de ar ou oxigênio na subsuperfície para aumentar a volatilização dos contaminantes. Bombas de vácuo são utilizadas em sistemas de aspersão de ar para criar uma zona de vácuo ou pressão negativa em poços ou pontos ao redor da área contaminada. Isso induz o movimento do ar e do oxigênio pelo solo, facilitando a liberação e a volatilização dos VOCs. As bombas de vácuo são essenciais na aspersão de ar, pois mantêm o gradiente de pressão negativa necessário para a remoção eficaz de contaminantes.

5. Recuperação aprimorada a vácuo: A recuperação aprimorada a vácuo, também conhecida como extração aprimorada a vácuo, é uma técnica de remediação usada para recuperar líquidos em fase não aquosa (NAPLs) ou líquidos densos em fase não aquosa (DNAPLs) da subsuperfície. Bombas de vácuo são empregadas para criar um vácuo ou gradiente de pressão negativa em poços ou trincheiras de recuperação. Isso estimula o movimento e a extração de NAPLs ou DNAPLs em direção aos pontos de recuperação. As bombas de vácuo facilitam a recuperação eficiente desses contaminantes densos, que podem não ser facilmente recuperáveis usando métodos de bombeamento tradicionais.

É importante observar que diferentes tipos de bombas de vácuo, como bombas de palhetas rotativas, bombas de anel líquido ou bombas resfriadas a ar, podem ser usadas na remediação de solos e águas subterrâneas, dependendo dos requisitos específicos da técnica de remediação e da natureza dos contaminantes.

In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.

bomba de vácuo

What Are the Primary Applications of Vacuum Pumps?

Vacuum pumps have a wide range of applications across various industries. Here’s a detailed explanation:

1. Industrial Processes:

Vacuum pumps play a vital role in numerous industrial processes, including:

– Vacuum Distillation: Vacuum pumps are used in distillation processes to lower the boiling points of substances, enabling separation and purification of various chemicals and compounds.

– Vacuum Drying: Vacuum pumps aid in drying processes by creating a low-pressure environment, which accelerates moisture removal from materials without excessive heat.

– Vacuum Packaging: Vacuum pumps are used in the food industry to remove air from packaging containers, prolonging the shelf life of perishable goods by reducing oxygen exposure.

– Vacuum Filtration: Filtration processes can benefit from vacuum pumps to enhance filtration rates by applying suction, facilitating faster separation of solids and liquids.

2. Laboratory and Research:

Vacuum pumps are extensively used in laboratories and research facilities for various applications:

– Vacuum Chambers: Vacuum pumps create controlled low-pressure environments within chambers for conducting experiments, testing materials, or simulating specific conditions.

– Mass Spectrometry: Mass spectrometers often utilize vacuum pumps to create the necessary vacuum conditions for ionization and analysis of samples.

– Freeze Drying: Vacuum pumps enable freeze-drying processes, where samples are frozen and then subjected to a vacuum, allowing the frozen water to sublimate directly from solid to vapor state.

– Electron Microscopy: Vacuum pumps are essential for electron microscopy techniques, providing the necessary vacuum environment for high-resolution imaging of samples.

3. Semiconductor and Electronics Industries:

High vacuum pumps are critical in the semiconductor and electronics industries for manufacturing and testing processes:

– Semiconductor Fabrication: Vacuum pumps are used in various stages of chip manufacturing, including deposition, etching, and ion implantation processes.

– Thin Film Deposition: Vacuum pumps create the required vacuum conditions for depositing thin films of materials onto substrates, as done in the production of solar panels, optical coatings, and electronic components.

– Leak Detection: Vacuum pumps are utilized in leak testing applications to detect and locate leaks in electronic components, systems, or pipelines.

4. Medical and Healthcare:

Vacuum pumps have several applications in the medical and healthcare sectors:

– Vacuum Assisted Wound Closure: Vacuum pumps are used in negative pressure wound therapy (NPWT), where they create a controlled vacuum environment to promote wound healing and removal of excess fluids.

– Laboratory Equipment: Vacuum pumps are essential in medical and scientific equipment such as vacuum ovens, freeze dryers, and centrifugal concentrators.

– Anesthesia and Medical Suction: Vacuum pumps are utilized in anesthesia machines and medical suction devices to create suction and remove fluids or gases from the patient’s body.

5. HVAC and Refrigeration:

Vacuum pumps are employed in the HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries:

– Refrigeration and Air Conditioning Systems: Vacuum pumps are used during system installation, maintenance, and repair to evacuate moisture and air from refrigeration and air conditioning systems, ensuring efficient operation.

– Vacuum Insulation Panels: Vacuum pumps are utilized in the manufacturing of vacuum insulation panels, which offer superior insulation properties for buildings and appliances.

6. Power Generation:

Vacuum pumps play a role in power generation applications:

– Steam Condenser Systems: Vacuum pumps are used in power plants to remove non-condensable gases from steam condenser systems, improving thermal efficiency.

– Gas Capture: Vacuum pumps are utilized to capture and remove gases, such as hydrogen or helium, in nuclear power plants, research reactors, or particle accelerators.

These are just a few examples of the primary applications of vacuum pumps. The versatility and wide range of vacuum pump types make them essential in numerous industries, contributing to various manufacturing processes, research endeavors, and technological advancements.

Bomba de vácuo de aço inoxidável de alta qualidade para a indústria de papel da China freios da bomba de vácuoBomba de vácuo de aço inoxidável de alta qualidade para a indústria de papel da China freios da bomba de vácuo
editor by CX 2023-12-12

pt_BRPT