ページを選択

China Good quality Self-Priming Pump New Design System Suction Electric Water Pump 0.5HP Vacuum Pump vacuum pump adapter

Product Description

 

Product Description

 Horizontal Self-priming Centrifugal Sewage Pump
Solar deep well pump are widely used for deep well. Max lift is more than 300 meters. Pump body are with high quality stainless steel material. The water outlet can be with stainless steel, brass or cast iron material.

 

Detailed Photos

 

よくあるご質問

 

Q: How to order?
A: send us inquiry → receive our quotation → negotiate details → confirm the sample → sign contract/deposit → mass production → cargo ready → balance/delivery → further cooperation.

Q: How about Sample order?
A: Sample is available for you. please contact us for details. Contact us

Q: Which shipping way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Post,Sea are available.The other shipping ways are also available, please contact us if you need ship by the other shipping way. 

Q: How long is the deliver?
A: Devliver time depends on the quantity you order. usually it takes 15-25 working days.

Q: My package has missing products. What can I do?
A: Please contact our support team and we will confirm your order with the package contents.We apologize for any inconveniences. 

Q: How to confirm the payment?
A: We accept payment by T/T, PayPal, the other payment ways also could be accepted,Please contact us before you pay by the other payment ways. Also 30-50% deposit is available, the balance money should be paid before shipping.
 

Max.Head: Within 300m
Max.Capacity: >400 L/min
Driving Type: Motor
Impeller Number: Single-Stage Pump
Working Pressure: High Pressure Pump
Influent Type of Impeller: Single Suction Pump
Customization:
Available

|

真空ポンプ

How Do You Maintain and Troubleshoot Vacuum Pumps?

Maintaining and troubleshooting vacuum pumps is essential to ensure their optimal performance and longevity. Here’s a detailed explanation:

Maintenance of Vacuum Pumps:

1. Regular Inspection: Perform regular visual inspections of the pump to check for any signs of damage, leaks, or abnormal wear. Inspect the motor, belts, couplings, and other components for proper alignment and condition.

2. Lubrication: Follow the manufacturer’s guidelines for lubrication. Some vacuum pumps require regular oil changes or lubrication of moving parts. Ensure that the correct type and amount of lubricant are used.

3. Oil Level Check: Monitor the oil level in oil-sealed pumps and maintain it within the recommended range. Add or replace oil as necessary, following the manufacturer’s instructions.

4. Filter Maintenance: Clean or replace filters regularly to prevent clogging and ensure proper airflow. Clogged filters can impair pump performance and increase energy consumption.

5. Cooling System: If the vacuum pump has a cooling system, inspect it regularly for cleanliness and proper functioning. Clean or replace cooling components as needed to prevent overheating.

6. Seals and Gaskets: Check the seals and gaskets for signs of wear or leakage. Replace any damaged or worn seals promptly to maintain airtightness.

7. Valve Maintenance: If the vacuum pump includes valves, inspect and clean them regularly to ensure proper operation and prevent blockages.

8. Vibration and Noise: Monitor the pump for excessive vibration or unusual noise, which may indicate misalignment, worn bearings, or other mechanical issues. Address these issues promptly to prevent further damage.

Troubleshooting Vacuum Pump Problems:

1. Insufficient Vacuum Level: If the pump is not achieving the desired vacuum level, check for leaks in the system, improper sealing, or worn-out seals. Inspect valves, connections, and seals for leaks and repair or replace as needed.

2. Poor Performance: If the pump is not providing adequate performance, check for clogged filters, insufficient lubrication, or worn-out components. Clean or replace filters, ensure proper lubrication, and replace worn parts as necessary.

3. Overheating: If the pump is overheating, check the cooling system for blockages or insufficient airflow. Clean or replace cooling components and ensure proper ventilation around the pump.

4. Excessive Noise or Vibration: Excessive noise or vibration may indicate misalignment, worn bearings, or other mechanical issues. Inspect and repair or replace damaged or worn parts. Ensure proper alignment and balance of rotating components.

5. Motor Issues: If the pump motor fails to start or operates erratically, check the power supply, electrical connections, and motor components. Test the motor using appropriate electrical testing equipment and consult an electrician or motor specialist if necessary.

6. Excessive Oil Consumption: If the pump is consuming oil at a high rate, check for leaks or other issues that may be causing oil loss. Inspect seals, gaskets, and connections for leaks and repair as needed.

7. Abnormal Odors: Unusual odors, such as a burning smell, may indicate overheating or other mechanical problems. Address the issue promptly and consult a technician if necessary.

8. Manufacturer Guidelines: Always refer to the manufacturer’s guidelines and recommendations for maintenance and troubleshooting specific to your vacuum pump model. Follow the prescribed maintenance schedule and seek professional assistance when needed.

By following proper maintenance procedures and promptly addressing any troubleshooting issues, you can ensure the reliable operation and longevity of your vacuum pump.

真空ポンプ

Can Vacuum Pumps Be Used for Soil and Groundwater Remediation?

Vacuum pumps are indeed widely used for soil and groundwater remediation. Here’s a detailed explanation:

Soil and groundwater remediation refers to the process of removing contaminants from the soil and groundwater to restore environmental quality and protect human health. Vacuum pumps play a crucial role in various remediation techniques by facilitating the extraction and treatment of contaminated media. Some of the common applications of vacuum pumps in soil and groundwater remediation include:

1. Soil Vapor Extraction (SVE): Soil vapor extraction is a widely used remediation technique for volatile contaminants present in the subsurface. It involves the extraction of vapors from the soil by applying a vacuum to the subsurface through wells or trenches. Vacuum pumps create a pressure gradient that induces the movement of vapors towards the extraction points. The extracted vapors are then treated to remove or destroy the contaminants. Vacuum pumps play a vital role in SVE by maintaining the necessary negative pressure to enhance the volatilization and extraction of contaminants from the soil.

2. Dual-Phase Extraction (DPE): Dual-phase extraction is a remediation method used for the simultaneous extraction of both liquids (such as groundwater) and vapors (such as volatile organic compounds) from the subsurface. Vacuum pumps are utilized to create a vacuum in extraction wells or points, drawing out both the liquid and vapor phases. The extracted groundwater and vapors are then separated and treated accordingly. Vacuum pumps are essential in DPE systems for efficient and controlled extraction of both liquid and vapor-phase contaminants.

3. Groundwater Pumping and Treatment: Vacuum pumps are also employed in groundwater remediation through the process of pumping and treatment. They are used to extract contaminated groundwater from wells or recovery trenches. By creating a vacuum or negative pressure, vacuum pumps facilitate the flow of groundwater towards the extraction points. The extracted groundwater is then treated to remove or neutralize the contaminants before being discharged or re-injected into the ground. Vacuum pumps play a critical role in maintaining the required flow rates and hydraulic gradients for effective groundwater extraction and treatment.

4. Air Sparging: Air sparging is a remediation technique used to treat groundwater and soil contaminated with volatile organic compounds (VOCs). It involves the injection of air or oxygen into the subsurface to enhance the volatilization of contaminants. Vacuum pumps are utilized in air sparging systems to create a vacuum or negative pressure zone in wells or points surrounding the contaminated area. This induces the movement of air and oxygen through the soil, facilitating the release and volatilization of VOCs. Vacuum pumps are essential in air sparging by maintaining the necessary negative pressure gradient for effective contaminant removal.

5. Vacuum-Enhanced Recovery: Vacuum-enhanced recovery, also known as vacuum-enhanced extraction, is a remediation technique used to recover non-aqueous phase liquids (NAPLs) or dense non-aqueous phase liquids (DNAPLs) from the subsurface. Vacuum pumps are employed to create a vacuum or negative pressure gradient in recovery wells or trenches. This encourages the movement and extraction of NAPLs or DNAPLs towards the recovery points. Vacuum pumps facilitate the efficient recovery of these dense contaminants, which may not be easily recoverable using traditional pumping methods.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, or air-cooled pumps, may be used in soil and groundwater remediation depending on the specific requirements of the remediation technique and the nature of the contaminants.

In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.

真空ポンプ

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

- 説明ダイヤフラムポンプは、真空を作り出すために上下に動く柔軟なダイヤフラムを使用しています。ダイアフラムは真空チャンバーと駆動機構を分離し、コンタミネーションを防ぎ、オイルフリーの運転を実現します。

- 用途ダイヤフラム真空ポンプは、研究室、医療機器、分析機器、オイルフリーまたは耐薬品性真空が必要な用途で一般的に使用されています。

3.スクロール真空ポンプ

- 説明スクロールポンプには、2つのらせん状のスクロールがあり、1つは固定され、もう1つは公転し、一連の動く三日月型のガスポケットを形成します。スクロールが移動すると、ガスは連続的に捕捉され、圧縮され、真空になります。

- 用途スクロール真空ポンプは、分析機器、真空乾燥、真空コーティングなど、クリーンで乾燥した真空を必要とする用途に適しています。

4.ピストン真空ポンプ

- 説明ピストンポンプは、往復運動するピストンを使ってガスを圧縮し、バルブから放出することで真空を作ります。高真空レベルを達成できますが、潤滑が必要な場合があります。

- 用途ピストン真空ポンプは、真空炉、凍結乾燥、半導体製造など、高真空レベルを必要とする用途で使用される。

5.ターボ分子真空ポンプ

- 説明ターボポンプは、高速回転するブレードまたはインペラを使用して分子流を作り出し、気体分子をシステムから連続的に送り出します。ターボポンプの運転には、通常、バックポンプが必要です。

- 用途ターボ分子ポンプは、半導体製造、研究所、質量分析などの高真空用途で使用される。

6.拡散真空ポンプ:

- 説明ディフュージョンポンプは、ガス分子の拡散と、それに続く高速ジェット蒸気による除去に依存しています。高真空レベルで作動し、バックポンプが必要です。

- 用途拡散ポンプは、真空冶金、宇宙シミュレーションチャンバー、粒子加速器など、高真空レベルを必要とするアプリケーションで一般的に使用されています。

7.極低温真空ポンプ

- 説明極低温ポンプは、極低温で気体分子を凝縮・捕獲し、真空を作り出します。液体窒素やヘリウムのような極低温流体で作動します。

- アプリケーション極低温真空ポンプは、素粒子物理学研究、材料科学、核融合炉などの超高真空アプリケーションで使用されます。

これらは、さまざまなタイプの真空ポンプのほんの一例です。それぞれのタイプには利点、制限、特定のアプリケーションへの適合性があります。真空ポンプの選択は、必要な真空レベル、ガス適合性、信頼性、コスト、アプリケーションの特定のニーズなどの要因によって決まります。

China Good quality Self-Priming Pump New Design System Suction Electric Water Pump 0.5HP Vacuum Pump   vacuum pump adapter	China Good quality Self-Priming Pump New Design System Suction Electric Water Pump 0.5HP Vacuum Pump   vacuum pump adapter
editor by CX 2023-11-06

jaJA