ページを選択

China Best Sales 10HP CHINAMFG Three Phase Vacuum Pump with Low Price vacuum pump ac system

Product Description

 10HP CHINAMFG Three Phase Vacuum Pump With Low Price

 

モデル Stage/Phase Frequency パワー 電圧 Current Airflow Vacuum Pressure Noise weight
Hz KW V A m3/h mbar mbar db KG
2JM 810 H27 Single/Three 50 7.5 345-415△/600-720Y 16.7△/9.6Y 530 -320 430 70 66
60 8.6 380-480△/660-720Y 17.3△/10.0Y 620 -350 400 74

Other main product At 50Hz  ( voltage can customize )

Application:

  • Agriculture(Fish pond and aeration tanks)
  • Beverage(bottle drying)
  • Bio fuels/bio-gas system
  • Food and vegetable processing
  • Medical and Health service(Dental cart and dental vacuum)
  • Package (Air knives blown-off / Labeling/Drying)
  • Plastics/Rubber(Air knives blown-off/ Bottle blow moulding/ Extruder Degassing/Pneumatic conveying/ Thermoforming)
  • Printing
  • Paper and pulp/ paper converting
  • Textile industry
  • Transportation/Loading/Unloading(Pneumatic conveying/material handling)
  • Water treatment/sewage treatment
  • Woodworking(CNC Routing/bulk handling

Air Blowers Export Service:

18 months warranty 

Professional engineer will help to recommend the most suitable models

after studying customers’ requirements,

OEM service available.

24 hours service online,you can touch us by email, ,  ,

 

7 days delivery time and safe shipment

Contact

Lucy Wu [sales manager]

TEL: 4

   

     

  
 

Material: Aluminum
Usage: Aeration
Flow Direction: Centrifugal
Pressure: High Pressure
Certification: CE, CCC
Power: 7.5kw
Customization:
Available

|

真空ポンプ

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

真空ポンプ

Can Vacuum Pumps Be Used for Leak Detection?

Yes, vacuum pumps can be used for leak detection purposes. Here’s a detailed explanation:

Leak detection is a critical task in various industries, including manufacturing, automotive, aerospace, and HVAC. It involves identifying and locating leaks in a system or component that may result in the loss of fluids, gases, or pressure. Vacuum pumps can play a significant role in leak detection processes by creating a low-pressure environment and facilitating the detection of leaks through various methods.

Here are some ways in which vacuum pumps can be used for leak detection:

1. Vacuum Decay Method: The vacuum decay method is a common technique used for leak detection. It involves creating a vacuum in a sealed system or component using a vacuum pump and monitoring the pressure change over time. If there is a leak present, the pressure will gradually increase due to the ingress of air or gas. By measuring the rate of pressure rise, the location and size of the leak can be estimated. Vacuum pumps are used to evacuate the system and establish the initial vacuum required for the test.

2. Bubble Testing: Bubble testing is a simple and visual method for detecting leaks. In this method, the component or system being tested is pressurized with a gas, and then immersed in a liquid, typically soapy water. If there is a leak, the gas escaping from the component will form bubbles in the liquid, indicating the presence and location of the leak. Vacuum pumps can be used to create a pressure differential that forces gas out of the leak, making it easier to detect the bubbles.

3. Helium Leak Detection: Helium leak detection is a highly sensitive method used to locate extremely small leaks. Helium, being a small atom, can easily penetrate small openings and leaks. In this method, the system or component is pressurized with helium gas, and a vacuum pump is used to evacuate the surrounding area. A helium leak detector is then used to sniff or scan the area for the presence of helium, indicating the location of the leak. Vacuum pumps are essential for creating the low-pressure environment required for this method and ensuring accurate detection.

4. Pressure Change Testing: Vacuum pumps can also be used in pressure change testing for leak detection. This method involves pressurizing a system or component and then isolating it from the pressure source. The pressure is monitored over time, and any significant pressure drop indicates the presence of a leak. Vacuum pumps can be used to evacuate the system after pressurization, returning it to atmospheric pressure for comparison or retesting.

5. Mass Spectrometer Leak Detection: Mass spectrometer leak detection is a highly sensitive and precise method used to identify and quantify leaks. It involves introducing a tracer gas, usually helium, into the system or component being tested. A vacuum pump is used to evacuate the surrounding area, and a mass spectrometer is employed to analyze the gas samples for the presence of the tracer gas. This method allows for accurate detection and quantification of leaks down to very low levels. Vacuum pumps are crucial for creating the necessary vacuum conditions and ensuring reliable results.

In summary, vacuum pumps can be effectively used for leak detection purposes. They facilitate various leak detection methods such as vacuum decay, bubble testing, helium leak detection, pressure change testing, and mass spectrometer leak detection. Vacuum pumps create the required low-pressure environment, assist in evacuating the system or component being tested, and enable accurate and reliable leak detection. The choice of vacuum pump depends on the specific requirements of the leak detection method and the sensitivity needed for the application.

真空ポンプ

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

- 説明ダイヤフラムポンプは、真空を作り出すために上下に動く柔軟なダイヤフラムを使用しています。ダイアフラムは真空チャンバーと駆動機構を分離し、コンタミネーションを防ぎ、オイルフリーの運転を実現します。

- 用途ダイヤフラム真空ポンプは、研究室、医療機器、分析機器、オイルフリーまたは耐薬品性真空が必要な用途で一般的に使用されています。

3.スクロール真空ポンプ

- 説明スクロールポンプには、2つのらせん状のスクロールがあり、1つは固定され、もう1つは公転し、一連の動く三日月型のガスポケットを形成します。スクロールが移動すると、ガスは連続的に捕捉され、圧縮され、真空になります。

- 用途スクロール真空ポンプは、分析機器、真空乾燥、真空コーティングなど、クリーンで乾燥した真空を必要とする用途に適しています。

4.ピストン真空ポンプ

- 説明ピストンポンプは、往復運動するピストンを使ってガスを圧縮し、バルブから放出することで真空を作ります。高真空レベルを達成できますが、潤滑が必要な場合があります。

- 用途ピストン真空ポンプは、真空炉、凍結乾燥、半導体製造など、高真空レベルを必要とする用途で使用される。

5.ターボ分子真空ポンプ

- 説明ターボポンプは、高速回転するブレードまたはインペラを使用して分子流を作り出し、気体分子をシステムから連続的に送り出します。ターボポンプの運転には、通常、バックポンプが必要です。

- 用途ターボ分子ポンプは、半導体製造、研究所、質量分析などの高真空用途で使用される。

6.拡散真空ポンプ:

- 説明ディフュージョンポンプは、ガス分子の拡散と、それに続く高速ジェット蒸気による除去に依存しています。高真空レベルで作動し、バックポンプが必要です。

- 用途拡散ポンプは、真空冶金、宇宙シミュレーションチャンバー、粒子加速器など、高真空レベルを必要とするアプリケーションで一般的に使用されています。

7.極低温真空ポンプ

- 説明極低温ポンプは、極低温で気体分子を凝縮・捕獲し、真空を作り出します。液体窒素やヘリウムのような極低温流体で作動します。

- アプリケーション極低温真空ポンプは、素粒子物理学研究、材料科学、核融合炉などの超高真空アプリケーションで使用されます。

これらは、さまざまなタイプの真空ポンプのほんの一例です。それぞれのタイプには利点、制限、特定のアプリケーションへの適合性があります。真空ポンプの選択は、必要な真空レベル、ガス適合性、信頼性、コスト、アプリケーションの特定のニーズなどの要因によって決まります。

China Best Sales 10HP CHINAMFG Three Phase Vacuum Pump with Low Price   vacuum pump ac system	China Best Sales 10HP CHINAMFG Three Phase Vacuum Pump with Low Price   vacuum pump ac system
editor by CX 2023-11-24

jaJA