Select Page

China Hot selling Good Quality vacuum Pvp Hydraulic Oil Booster Spare Parts CHINAMFG Pump Test with Good quality

Product Description

HangZhou Haozheng Hydraulic Machinery Equipment Co., Ltd.

HangZhou Haozheng Hydraulic Machinery Equipment Co., Ltd. is a manufacturer that started researching, developing, manufacturing and selling hydraulic pumps earlier in China. The main hydraulic products include A10VSO\PVH\PAVC\A11VO\A4VSO\PV\PVXS\PVM and other series of plunger pumps and hydraulic spare parts, which are exported to Canada, the United States, Mexico, Brazil, Norway, Italy, France, the United Kingdom, Russia, South Africa, Kenya, Saudi Arabia and others. It is widely used in steel mills, power plants, engineering machinery, mining machinery, industrial equipment, metallurgical machinery, injection molding, oil drilling, ports and ships and other fields.
product-group/nMBGJqeDbgVC/Parker-Piston-Pump-catalog-1.html

product-group/ZeNaotCEAgVi/Rexroth-Piston-Pump-catalog-1.html

product-group/jeJAcxmvuIfG/Vikcers-Piston-Pump-catalog-1.html

product-group/BqFfjLEznPVk/Hydraulic-pump-parts-catalog-1.html
 

Product Description

 

Mode displacement cm³/rev Flow L/min Bar Rpm Power/kw Kg
PVM074 73.7 127 280-350bar 1800 63 45
PVM098 98.3 170 88 55
PVM131 131.1 178 94 66
PVM141 141 199 230-280bar 79 145

Our Products

 

We provide various models of axial variable displacement piston pumps and accessories, including the CHINAMFG brand’s A11VO, A10VSO, A11VO, the Vikers brand’s PVH, PVXS, PVB, PVM, and the CHINAMFG brand’s PAVC, PVP, PV. We also offer the Cate tractor modified version PVH 6E-3136 series. Therefore, hydraulic pumps can be customized according to displacement, control method, flange port, etc.

 

 

Company Profile

 

 

 

FAQ

1.What’s the application for pump?

Construction equipment Steel factory or Power plant Industrial equipment Related hydraulic system

2.What about the MOQ?

MOQ:1pcs.

3.Are you manufacturer?  And what’s the delivery time?

Yes, we are manufacturer and have our own factory. Generally, its in stock for common models, 1-3 days will be finished and sent to customer in time.

4.Which payment methods are accepted?

We usually accept T/T,L/C,Western union,Trade assurance,VISA Card.

5.How about the inspection and Guarantee of products?

We promise: all products are tested before ship, to confirm it will be working and  in good conditions when customers get. Also, we offer 12-month guarantee, if it doesn’t work due to quality issue in the period, we will send spares to repair for free. Accordingly, the pump will work last at least 18 months.

6 What about your after-sale service?

If there is any question in use, please talk with your sales manager at any time, so we will know your problems are and help to solve.

We can provide ODM and OEM service

Production capacity:

Product Line Name Production Line Capacity Actual Units Produced(Previous Year)
A10VSO Series Piston Pump,HG Series Gear Pump,PAVC Series Piston Pump,PV Series Piston Pump,PVH Series Piston Pump 2  

Export Market Distribution:

Market   Total Revenue (%)
North America   6
South America   4
Eastern Europe   8
Southeast Asia   2
Africa   3
Oceania   2
Mid East   2
Eastern Asia   1
Western Europe   3
Central America   2
Northern Europe   2
Southern Europe   3
South Asia   2
Domestic Market   60

Production Machinery:

Machine Name Brand & Model No. Quantity Number of Year(s) Used Condition
CNC Machining Center Confidential 8 2 acceptable
CNC Lathe Confidential 4 2 acceptable
Surface Grinder Confidential 1 2 acceptable
Cylindrical Grinder Confidential 1 2 acceptable
Hydraulic Gear Drawing Machine Confidential 1 2 acceptable
Horizontal Honing Machine Confidential 1 2 acceptable
Ordinary Lathe Confidential 1 2 acceptable
Pressure Washer Confidential 1 2 acceptable
Milling Machine Confidential 1 2 acceptable

Testing Machinery:

Machine Name Brand & Model No. Quantity Number of Year(s) Used Condition
Hydraulic Test Bench Confidential 1 1 acceptable

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hour Online
Warranty: 1 Year
Structure: Multi Cylinder
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

Considerations for Selecting a Vacuum Pump for Cleanroom Applications

When it comes to selecting a vacuum pump for cleanroom applications, several considerations should be taken into account. Here’s a detailed explanation:

Cleanrooms are controlled environments used in industries such as semiconductor manufacturing, pharmaceuticals, biotechnology, and microelectronics. These environments require strict adherence to cleanliness and particle control standards to prevent contamination of sensitive processes or products. Selecting the right vacuum pump for cleanroom applications is crucial to maintain the required level of cleanliness and minimize the introduction of contaminants. Here are some key considerations:

1. Cleanliness: The cleanliness of the vacuum pump is of utmost importance in cleanroom applications. The pump should be designed and constructed to minimize the generation and release of particles, oil vapors, or other contaminants into the cleanroom environment. Oil-free or dry vacuum pumps are commonly preferred in cleanroom applications as they eliminate the risk of oil contamination. Additionally, pumps with smooth surfaces and minimal crevices are easier to clean and maintain, reducing the potential for particle buildup.

2. Outgassing: Outgassing refers to the release of gases or vapors from the surfaces of materials, including the vacuum pump itself. In cleanroom applications, it is crucial to select a vacuum pump with low outgassing characteristics to prevent the introduction of contaminants into the environment. Vacuum pumps specifically designed for cleanroom use often undergo special treatments or use materials with low outgassing properties to minimize this effect.

3. Particle Generation: Vacuum pumps can generate particles due to the friction and wear of moving parts, such as rotors or vanes. These particles can become a source of contamination in cleanrooms. When selecting a vacuum pump for cleanroom applications, it is essential to consider the pump’s particle generation level and choose pumps that have been designed and tested to minimize particle emissions. Pumps with features like self-lubricating materials or advanced sealing mechanisms can help reduce particle generation.

4. Filtration and Exhaust Systems: The filtration and exhaust systems associated with the vacuum pump are critical for maintaining cleanroom standards. The vacuum pump should be equipped with efficient filters that can capture and remove any particles or contaminants generated during operation. High-quality filters, such as HEPA (High-Efficiency Particulate Air) filters, can effectively trap even the smallest particles. The exhaust system should be properly designed to ensure that filtered air is released outside the cleanroom or passes through additional filtration before being reintroduced into the environment.

5. Noise and Vibrations: Noise and vibrations generated by vacuum pumps can have an impact on cleanroom operations. Excessive noise can affect the working environment and compromise communication, while vibrations can potentially disrupt sensitive processes or equipment. It is advisable to choose vacuum pumps specifically designed for quiet operation and that incorporate measures to minimize vibrations. Pumps with noise-dampening features and vibration isolation systems can help maintain a quiet and stable cleanroom environment.

6. Compliance with Standards: Cleanroom applications often have specific industry standards or regulations that must be followed. When selecting a vacuum pump, it is important to ensure that it complies with relevant cleanroom standards and requirements. Considerations may include ISO cleanliness standards, cleanroom classification levels, and industry-specific guidelines for particle count, outgassing levels, or allowable noise levels. Manufacturers that provide documentation and certifications related to cleanroom suitability can help demonstrate compliance.

7. Maintenance and Serviceability: Proper maintenance and regular servicing of vacuum pumps are essential for their reliable and efficient operation. When choosing a vacuum pump for cleanroom applications, consider factors such as ease of maintenance, availability of spare parts, and access to service and support from the manufacturer. Pumps with user-friendly maintenance features, clear service instructions, and a responsive customer support network can help minimize downtime and ensure continued cleanroom performance.

In summary, selecting a vacuum pump for cleanroom applications requires careful consideration of factors such as cleanliness, outgassing characteristics, particle generation, filtration and exhaust systems, noise and vibrations, compliance with standards, and maintenance requirements. By choosing vacuum pumps designed specifically for cleanroom use and considering these key factors, cleanroom operators can maintain the required level of cleanliness and minimize the risk of contamination in their critical processes and products.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China Hot selling Good Quality vacuum Pvp Hydraulic Oil Booster Spare Parts CHINAMFG Pump Test   with Good quality China Hot selling Good Quality vacuum Pvp Hydraulic Oil Booster Spare Parts CHINAMFG Pump Test   with Good quality
editor by CX 2024-03-20

en_USEN